

Scala Book

Alvin Alexander, et al.

Learn Scala fast
with small, easy lessons

Scala Book

Version 1.1, published April 26, 2020

Rights: Creative Commons NonCommercial Share Alike 3.01

Gratitude: Many thanks to those who have contributed suggestions and editing to this
book, including Julien Richard-Foy, Seth Tisue, Marcelo de Oliveira Rosa, and others
who I may have missed. All the best, Al.

1https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

Contents

1 Introduction 1

2 Prelude: A Taste of Scala 3

3 Preliminaries 15

4 Scala Features 17

5 Hello, World 19

6 Hello, World - Version 2 23

7 The Scala REPL 25

8 Two Types of Variables 27

9 The Type is Optional 31

10 A Few Built-In Types 33

11 Two Notes About Strings 37

12 Command-Line I/O 41

13 Control Structures 43

14 The if/then/else Construct 45

15 for Loops 47

16 for Expressions 51

CONTENTS

17 match Expressions 55

18 try/catch/finally Expressions 61

19 Scala Classes 63

20 Auxiliary Class Constructors 69

21 Supplying Default Values for Constructor Parameters 71

22 A First Look at Scala Methods 73

23 Enumerations (and a Complete Pizza Class) 77

24 Scala Traits and Abstract Classes 83

25 Using Scala Traits as Interfaces 85

26 Using Scala Traits Like Abstract Classes 89

27 Abstract Classes 95

28 Scala Collections 99

29 The ArrayBuffer Class 101

30 The List Class 105

31 The Vector Class 109

32 The Map Class 111

33 The Set Class 115

34 Anonymous Functions 119

35 Common Sequence Methods 125

36 Common Map Methods 133

CONTENTS

37 A Few Miscellaneous Items 137

38 Tuples 139

39 An OOP Example 143

40 SBT and ScalaTest 149

41 The Scala Build Tool (SBT) 151

42 Using ScalaTest with SBT 157

43 Writing BDD Style Tests with ScalaTest and SBT 161

44 Functional Programming 165

45 Pure Functions 167

46 Passing Functions Around 171

47 No Null Values 175

48 Companion Objects 183

49 Case Classes 191

50 Case Objects 197

51 Functional Error Handling in Scala 201

52 Concurrency 205

53 Scala Futures 207

54 Where To Go Next 217

CONTENTS

1
Introduction

In these pages, Scala Book provides a quick introduction and overview of the Scala
programming language. The book is written in an informal style, and consists of more
than 50 small lessons. Each lesson is long enough to give you an idea of how the lan-
guage features in that lesson work, but short enough that you can read it in fifteen
minutes or less.

One note before beginning:

• In regards to programming style, most Scala programmers indent their code
with two spaces, but we use four spaces because we think itmakes the code easier
to read, especially in a book format.

To begin reading, click the “next” link, or select the Prelude: A Taste of Scala lesson in
the table of contents.

1

2 CHAPTER 1. INTRODUCTION

2
Prelude: A Taste of Scala

Our hope in this book is to demonstrate that Scala is a beautiful, modern, expressive
programming language. To help demonstrate that, in this first chapter we’ll jump right
in and provide a whirlwind tour of Scala’s main features. After this tour, the book
begins with a more traditional “Getting Started” chapter.

In this book we assume that you’ve used a language like Java before, and
are ready to see a series of Scala examples to get a feel forwhat the language
looks like. Although it’s not 100% necessary, it will also help if you’ve
already downloaded and installed Scala so you can test the examples as
you go along. You can also test these examples online with ScalaFiddle.io.

2.1 Overview

Before we jump into the examples, here are a few important things to know about Scala:

• It’s a high-level language
• It’s statically typed
• Its syntax is concise but still readable — we call it expressive
• It supports the object-oriented programming (OOP) paradigm
• It supports the functional programming (FP) paradigm
• It has a sophisticated type inference system
• Scala code results in .class files that run on the Java Virtual Machine (JVM)
• It’s easy to use Java libraries in Scala

2.2 Hello, world

Ever since the book, C Programming Language, it’s been a tradition to begin program-
ming books with a “Hello, world” example, and not to disappoint, this is one way to
write that example in Scala:

3

http://scala-lang.org
https://www.scala-lang.org/download
https://scalafiddle.io

4 CHAPTER 2. PRELUDE: A TASTE OF SCALA

object Hello extends App {
println("Hello, world")

}

After you save that code to a file named Hello.scala, you can compile it with scalac:

$ scalac Hello.scala

If you’re coming to Scala from Java, scalac is just like javac, and that command creates
two files:

• Hello$.class
• Hello.class

These are the same “.class” bytecode files you create with javac, and they’re ready to
run in the JVM. You run the Hello application with the scala command:

$ scala Hello

We share more “Hello, world” examples in the lessons that follow, so we’ll leave that
introduction as-is for now.

2.3 The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a “playground” area to test your Scala code. We introduce it early here so you
can use it with the code examples that follow.

To start a REPL session, just type scala at your operating system command line, and
you’ll see something like this:

$ scala
Welcome to Scala 2.13.0 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).
Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it just sits there waiting for you to
type something. Inside the REPL you type Scala expressions to see how they work:

2.4. TWO TYPES OF VARIABLES 5

scala> val x = 1
x: Int = 1

scala> val y = x + 1
y: Int = 2

As those examples show, after you type your expressions in the REPL, it shows the
result of each expression on the line following the prompt.

2.4 Two types of variables

Scala has two types of variables:

• val is an immutable variable — like final in Java — and should be preferred

• var creates a mutable variable, and should only be used when there is a specific
reason to use it

• Examples:

val x = 1 //immutable
var y = 0 //mutable

2.5 Declaring variable types

In Scala, you typically create variables without declaring their type:

val x = 1
val s = "a string"
val p = new Person("Regina")

When you do this, Scala can usually infer the data type for you, as shown in these REPL
examples:

scala> val x = 1
val x: Int = 1

scala> val s = "a string"
val s: String = a string

6 CHAPTER 2. PRELUDE: A TASTE OF SCALA

This feature is known as type inference, and it’s a great way to help keep your code
concise. You can also explicitly declare a variable’s type, but that’s not usually necessary:

val x: Int = 1
val s: String = "a string"
val p: Person = new Person("Regina")

As you can see, that code looks unnecessarily verbose.

2.6 Control structures

Here’s a quick tour of Scala’s control structures.

2.6.1 if/else

Scala’s if/else control structure is similar to other languages:

if (test1) {
doA()

} else if (test2) {
doB()

} else if (test3) {
doC()

} else {
doD()

}

However, unlike Java and many other languages, the if/else construct returns a value,
so, among other things, you can use it as a ternary operator:

val x = if (a < b) a else b

2.6.2 match expressions

Scala has a match expression, which in itsmost basic use is like a Java switch statement:

val result = i match {

2.6. CONTROL STRUCTURES 7

case 1 => "one"
case 2 => "two"
case _ => "not 1 or 2"

}

The match expression isn’t limited to just integers, it can be used with any data type,
including booleans:

val booleanAsString = bool match {
case true => "true"
case false => "false"

}

Here’s an example of match being used as the body of a method, and matching against
many different types:

def getClassAsString(x: Any):String = x match {
case s: String => s + " is a String"
case i: Int => "Int"
case f: Float => "Float"
case l: List[_] => "List"
case p: Person => "Person"
case _ => "Unknown"

}

Powerful match expressions are a big feature of Scala, and we share more examples of
it later in this book.

2.6.3 try/catch

Scala’s try/catch control structure lets you catch exceptions. It’s similar to Java, but its
syntax is consistent with match expressions:

try {
writeToFile(text)

} catch {
case fnfe: FileNotFoundException => println(fnfe)
case ioe: IOException => println(ioe)

}

8 CHAPTER 2. PRELUDE: A TASTE OF SCALA

2.6.4 for loops and expressions

Scala for loops — which we generally write in this book as for-loops — look like this:

for (arg <- args) println(arg)

// "x to y" syntax
for (i <- 0 to 5) println(i)

// "x to y by" syntax
for (i <- 0 to 10 by 2) println(i)

You can also add the yield keyword to for-loops to create for-expressions that yield a
result. Here’s a for-expression that doubles each value in the sequence 1 to 5:

val x = for (i <- 1 to 5) yield i * 2

Here’s another for-expression that iterates over a list of strings:

val fruits = List("apple", "banana", "lime", "orange")

val fruitLengths = for {
f <- fruits
if f.length > 4

} yield f.length

Because Scala code generally just makes sense, we’ll imagine that you can guess how
this code works, even if you’ve never seen a for-expression or Scala list until now.

2.6.5 while and do/while

Scala also has while and do/while loops. Here’s their general syntax:

// while loop
while(condition) {

statement(a)
statement(b)

}

2.7. CLASSES 9

// do-while
do {

statement(a)
statement(b)

}
while(condition)

2.7 Classes

Here’s an example of a Scala class:

class Person(var firstName: String, var lastName: String) {
def printFullName() = println(s"$firstName $lastName")

}

This is how you use that class:

val p = new Person("Julia", "Kern")
println(p.firstName)
p.lastName = "Manes"
p.printFullName()

Notice that there’s no need to create “get” and “set” methods to access the fields in the
class.

As a more complicated example, here’s a Pizza class that you’ll see later in the book:

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
val toppings: ArrayBuffer[Topping]

) {
def addTopping(t: Topping): Unit = toppings += t
def removeTopping(t: Topping): Unit = toppings -= t
def removeAllToppings(): Unit = toppings.clear()

}

In that code, an ArrayBuffer is like Java’s ArrayList. The CrustSize, CrustType, and
Topping classes aren’t shown, but you can probably understand how that code works

10 CHAPTER 2. PRELUDE: A TASTE OF SCALA

without needing to see those classes.

2.8 Scala methods

Just like other OOP languages, Scala classes have methods, and this is what the Scala
method syntax looks like:

def sum(a: Int, b: Int): Int = a + b
def concatenate(s1: String, s2: String): String = s1 + s2

You don’t have to declare a method’s return type, so it’s perfectly legal to write those
two methods like this, if you prefer:

def sum(a: Int, b: Int) = a + b
def concatenate(s1: String, s2: String) = s1 + s2

This is how you call those methods:

val x = sum(1, 2)
val y = concatenate("foo", "bar")

There are more things you can do with methods, such as providing default values for
method parameters, but that’s a good start for now.

2.9 Traits

Traits in Scala are a lot of fun, and they also let you break your code down into small,
modular units. To demonstrate traits, here’s an example from later in the book. Given
these three traits:

trait Speaker {
def speak(): String // has no body, so it’s abstract

}

trait TailWagger {
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

}

2.10. COLLECTIONS CLASSES 11

trait Runner {
def startRunning(): Unit = println("I’m running")
def stopRunning(): Unit = println("Stopped running")

}

You can create a Dog class that extends all of those traits while providing behavior for
the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {
def speak(): String = "Woof!"

}

Similarly, here’s a Cat class that shows how to override multiple trait methods:

class Cat extends Speaker with TailWagger with Runner {
def speak(): String = "Meow"
override def startRunning(): Unit = println("Yeah ... I don’t run")
override def stopRunning(): Unit = println("No need to stop")

}

If that code makes sense — great, you’re comfortable with traits! If not, don’t worry,
we explain it in detail later in the book.

2.10 Collections classes

If you’re coming to Scala from Java and you’re ready to really jump in and learn Scala,
it’s possible to use the Java collections classes in Scala, and some people do so for several
weeks or months while getting comfortable with Scala. But it’s highly recommended
that you learn the basic Scala collections classes — List, ListBuffer, Vector, Array-
Buffer, Map, and Set — as soon as possible. A great benefit of the Scala collections
classes is that they offer many powerful methods that you’ll want to start using as soon
as possible to simplify your code.

2.10.1 Populating lists

There are times when it’s helpful to create sample lists that are populated with data, and
Scala offers many ways to populate lists. Here are just a few:

12 CHAPTER 2. PRELUDE: A TASTE OF SCALA

val nums = List.range(0, 10)
val nums = (1 to 10 by 2).toList
val letters = ('a' to 'f').toList
val letters = ('a' to 'f' by 2).toList

2.10.2 Sequence methods

While there aremany sequential collections classes you can use— Array, ArrayBuffer,
Vector, List, andmore— let’s look at some examples of what you can dowith the List
class. Given these two lists:

val nums = (1 to 10).toList
val names = List("joel", "ed", "chris", "maurice")

This is the foreach method:

scala> names.foreach(println)
joel
ed
chris
maurice

Here’s the filter method, followed by foreach:

scala> nums.filter(_ < 4).foreach(println)
1
2
3

Here are some examples of the map method:

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

scala> val capNames = names.map(_.capitalize)
capNames: List[String] = List(Joel, Ed, Chris, Maurice)

scala> val lessThanFive = nums.map(_ < 5)
lessThanFive: List[Boolean] = List(true, true, true, true, false, false, false, false, false, false)

2.11. TUPLES 13

Even without any explanation you can see how map works: It applies an algorithm you
supply to every element in the collection, returning a new, transformed value for each
element.

If you’re ready to see one of the most powerful collections methods, here’s foldLeft:

scala> nums.foldLeft(0)(_ + _)
res0: Int = 55

scala> nums.foldLeft(1)(_ * _)
res1: Int = 3628800

Once you know that the first parameter to foldLeft is a seed value, you can guess
that the first example yields the sum of the numbers in nums, and the second example
returns the product of all those numbers.

There aremany (many!) moremethods available to Scala collections classes, andmany
of them will be demonstrated in the collections lessons that follow, but hopefully this
gives you an idea of their power.

Formore details, jump to the Scala Book collections lessons, or see theMu-
table and Immutable collections overview for more details and examples.

2.11 Tuples

Tuples let you put a heterogenous collection of elements in a little container. Tuples can
contain between two and 22 values, and they can all be different types. For example,
given a Person class like this:

class Person(var name: String)

You can create a tuple that contains three different types like this:

val t = (11, "Eleven", new Person("Eleven"))

You can access the tuple values by number:

t._1
t._2

%7B%7Bsite.baseurl%7D%7D/overviews/scala-book/collections-101.html
%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/overview.html
%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/overview.html

14 CHAPTER 2. PRELUDE: A TASTE OF SCALA

t._3

Or assign the tuple fields to variables:

val (num, string, person) = (11, "Eleven", new Person("Eleven"))

Tuples are nice for those times when you need to put a little “bag” of things together
for a little while.

2.12 What we haven’t shown

While that was whirlwind introduction to Scala in about ten printed pages, there are
many things we haven’t shown yet, including:

• Strings and built-in numeric types
• Packaging and imports
• How to use Java collections classes in Scala
• How to use Java libraries in Scala
• How to build Scala projects
• How to perform unit testing in Scala
• How to write Scala shell scripts
• Maps, Sets, and other collections classes
• Object-oriented programming
• Functional programming
• Concurrency with Futures
• More …

If you like what you’ve seen so far, we hope you’ll like the rest of the book.

2.13 A bit of background

Scala was created by Martin Odersky, who studied under Niklaus Wirth, who created
Pascal and several other languages. Mr. Odersky is one of the co-designers of Generic
Java, and is also known as the “father” of the javac compiler.

https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Niklaus_Wirth

3
Preliminaries

In this book we assume that you’re familiar with another language like Java, so we don’t
spend much time on programming basics. That is, we assume that you’ve seen things
like for-loops, classes, and methods before, so we generally only write, “This is how
you create a class in Scala,” that sort of thing.

That being said, there are a few good things to know before you read this book.

3.1 Installing Scala

First, to run the examples in this book you’ll need to install Scala on your computer.
See our general Getting Started page for details on how to use Scala (a) in an IDE and
(b) from the command line.

3.2 Comments

One good thing to know up front is that comments in Scala are just like comments in
Java (and many other languages):

// a single line comment

/*
* a multiline comment
*/

/**
* also a multiline comment
*/

15

%7B%7Bsite.baseurl%7D%7D/getting-started/index.html

16 CHAPTER 3. PRELIMINARIES

3.3 IDEs

The three main IDEs (integrated development environments) for Scala are:

• IntelliJ IDEA
• Visual Studio Code
• Scala IDE for Eclipse

3.4 Naming conventions

Another good thing to know is that Scala naming conventions follow the same “camel
case” style as Java:

• Class names: Person, StoreEmployee
• Variable names: name, firstName
• Method names: convertToInt, toUpper

https://www.jetbrains.com/idea/download
https://code.visualstudio.com
http://scala-ide.org

4
Scala Features

The name Scala comes from the word scalable, and true to that name, it’s used to
power the busiest websites in the world, including Twitter, Netflix, Tumblr, LinkedIn,
Foursquare, and many more.

Here are a few more nuggets about Scala:

• It’s a modern programming language created by Martin Odersky (the father of
javac), and influenced by Java, Ruby, Smalltalk, ML, Haskell, Erlang, and others.

• It’s a high-level language.
• It’s statically typed.
• It has a sophisticated type inference system.
• Its syntax is concise but still readable — we call it expressive.
• It’s a pure object-oriented programming (OOP) language. Every variable is an

object, and every “operator” is a method.
• It’s also a functional programming (FP) language, so functions are also variables,

and you can pass them into other functions. You can write your code usingOOP,
FP, or combine them in a hybrid style.

• Scala source code compiles to “.class” files that run on the JVM.
• Scala also works extremely well with the thousands of Java libraries that have

been developed over the years.
• A great thing about Scala is that you can be productive with it on Day 1, but it’s

also a deep language, so as you go along you’ll keep learning, and finding newer,
better ways to write code. Some people say that Scala will change the way you
think about programming (and that’s a good thing).

• A great Scala benefit is that it lets you write concise, readable code. The time a
programmer spends reading code compared to the time spent writing code is
said to be at least a 10:1 ratio, so writing code that’s concise and readable is a big
deal. Because Scala has these attributes, programmers say that it’s expressive.

17

https://twitter.com/odersky?lang=en

18 CHAPTER 4. SCALA FEATURES

5
Hello, World

Since the release of the book, C Programming Language, most programming books
have begun with a simple “Hello, world” example, and in keeping with tradition, here’s
the source code for a Scala “Hello, world” example:

object Hello {
def main(args: Array[String]) = {

println("Hello, world")
}

}

Using a text editor, save that source code in a file named Hello.scala. After saving it,
run this scalac command at your command line prompt to compile it:

$ scalac Hello.scala

scalac is just like javac, and that command creates two new files:

• Hello$.class

• Hello.class

These are the same types of “.class” bytecode files you create with javac, and they’re
ready to work with the JVM.

Now you can run the Hello application with the scala command:

$ scala Hello

5.1 Discussion

Here’s the original source code again:

19

20 CHAPTER 5. HELLO, WORLD

object Hello {
def main(args: Array[String]) = {

println("Hello, world")
}

}

Here’s a short description of that code:

• It defines a method named main inside a Scala object named Hello
• An object is similar to a class, but you specifically use it when youwant a single

instance of that class

– If you’re coming to Scala from Java, this means that main is just like a
static method (We write more on this later)

• main takes an input parameter named args that is a string array
• Array is a class that wraps the Java array primitive

That Scala code is pretty much the same as this Java code:

public class Hello {
public static void main(String[] args) {

System.out.println("Hello, world")
}

}

5.2 Going deeper: Scala creates .class files

As we mentioned, when you run the scalac command it creates .class JVM bytecode
files. You can see this for yourself. As an example, run this javap command on the
Hello.class file:

$ javap Hello.class
Compiled from "Hello.scala"
public final class Hello {

public static void main(java.lang.String[]);
}

As that output shows, the javap command reads that .class file just as if it was created

5.2. GOING DEEPER: SCALA CREATES .CLASS FILES 21

from Java source code. Scala code runs on the JVM and can use existing Java libraries
— and both are terrific benefits for Scala programmers.

22 CHAPTER 5. HELLO, WORLD

6
Hello, World - Version 2

While that first “Hello, World” example works just fine, Scala provides a way to write
applications more conveniently. Rather than including a main method, your object
can just extend the App trait, like this:

object Hello2 extends App {
println("Hello, world")

}

If you save that code toHello.scala, compile it with scalac and run it with scala, you’ll
see the same result as the previous lesson.

What happens here is that the App trait has its own main method, so you don’t need to
write one. We’ll show later on how you can access command-line arguments with this
approach, but the short story is that it’s easy: they’re made available to you in a string
array named args.

We haven’t mentioned it yet, but a Scala trait is similar to an abstract
class in Java. (More accurately, it’s a combination of an abstract class and
an interface — more on this later!)

6.1 Extra credit

If you want to see how command-line arguments work when your object extends the
App trait, save this source code in a file named HelloYou.scala:

object HelloYou extends App {
if (args.size == 0)

println("Hello, you")
else

println("Hello, " + args(0))
}

23

24 CHAPTER 6. HELLO, WORLD - VERSION 2

Then compile it with scalac:

scalac HelloYou.scala

Then run it with and without command-line arguments. Here’s an example:

$ scala HelloYou
Hello, you

$ scala HelloYou Al
Hello, Al

This shows:

• Command-line arguments are automatically made available to you in a variable
named args.

• You determine the number of elements in args with args.size (or
args.length, if you prefer).

• args is an Array, and you access Array elements as args(0), args(1), etc. Be-
cause args is an object, you access the array elements with parentheses (not []
or any other special syntax).

7
The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a “playground” area to test your Scala code. To start a REPL session, just type
scala at your operating system command line, and you’ll see this:

$ scala
Welcome to Scala 2.13.0 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).
Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it just sits there waiting for you to
type something. Once you’re in the REPL, you can type Scala expressions to see how
they work:

scala> val x = 1
x: Int = 1

scala> val y = x + 1
y: Int = 2

As those examples show, just type your expressions inside the REPL, and it shows the
result of each expression on the line following the prompt.

7.1 Variables created as needed

Note that if you don’t assign the result of your expression to a variable, the REPL auto-
matically creates variables that start with the name res. The first variable is res0, the
second one is res1, etc.:

scala> 2 + 2
res0: Int = 4

25

26 CHAPTER 7. THE SCALA REPL

scala> 3 / 3
res1: Int = 1

These are actual variable names that are dynamically created, and you can use them in
your expressions:

scala> val z = res0 + res1
z: Int = 5

You’re going to use the REPL a lot in this book, so go ahead and start experimenting
with it. Here are a few expressions you can try to see how it all works:

val name = "John Doe"
"hello".head
"hello".tail
"hello, world".take(5)
println("hi")
1 + 2 * 3
(1 + 2) * 3
if (2 > 1) println("greater") else println("lesser")

In addition to the REPL there are a couple of other, similar tools you can use:

• Scastie is “an interactive playground for Scala” with several nice features, includ-
ing being able to control build settings and share code snippets

• IntelliJ IDEAhas aWorksheet plugin that lets you do the same things inside your
IDE

• The Scala IDE for Eclipse also has a Worksheet plugin
• scalafiddle.io lets you run similar experiments in a web browser

For more information on the Scala REPL, see the Scala REPL overview

https://scastie.scala-lang.org
https://scalafiddle.io
%7B%7Bsite.baseurl%7D%7D/overviews/repl/overview.html

8
Two Types of Variables

In Java you declare new variables like this:

String s = "hello";
int i = 42;
Person p = new Person("Joel Fleischman");

Each variable declaration is preceded by its type.

By contrast, Scala has two types of variables:

• val creates an immutable variable (like final in Java)
• var creates a mutable variable

This is what variable declaration looks like in Scala:

val s = "hello" // immutable
var i = 42 // mutable

val p = new Person("Joel Fleischman")

Those examples show that the Scala compiler is usually smart enough to infer the vari-
able’s data type from the code on the right side of the = sign. We say that the variable’s
type is inferred by the compiler. You can also explicitly declare the variable type if you
prefer:

val s: String = "hello"
var i: Int = 42

In most cases the compiler doesn’t need to see those explicit types, but you can add
them if you think it makes your code easier to read.

As a practical matter it can help to explicitly show the type when you’re

27

28 CHAPTER 8. TWO TYPES OF VARIABLES

working with methods in third-party libraries, especially if you don’t use
the library often, or if their method names don’t make the type clear.

8.1 The difference between val and var

The difference between val and var is that val makes a variable immutable — like
final in Java — and varmakes a variablemutable. Because val fields can’t vary, some
people refer to them as values rather than variables.

The REPL shows what happens when you try to reassign a val field:

scala> val a = 'a'
a: Char = a

scala> a = 'b'
<console>:12: error: reassignment to val

a = 'b'
^

That fails with a “reassignment to val” error, as expected. Conversely, you can reassign
a var:

scala> var a = 'a'
a: Char = a

scala> a = 'b'
a: Char = b

In Scala the general rule is that you should always use a val field unless there’s a good
reason not to. This simple rule (a) makes your code more like algebra and (b) helps get
you started down the path to functional programming, where all fields are immutable.

8.2 “Hello, world” with a val field

Here’s what a “Hello, world” app looks like with a val field:

object Hello3 extends App {
val hello = "Hello, world"
println(hello)

8.3. A NOTE ABOUT VAL FIELDS IN THE REPL 29

}

As before:

• Save that code in a file named Hello3.scala
• Compile it with scalac Hello3.scala
• Run it with scala Hello3

8.3 A note about val fields in the REPL

The REPL isn’t 100% the same as working with source code in an IDE, so there are a
few things you can do in the REPL that you can’t do when working on real-world code
in a project. One example of this is that you can redefine a val field in the REPL, like
this:

scala> val age = 18
age: Int = 18

scala> val age = 19
age: Int = 19

val fields can’t be redefined like that in the real world, but they can be redefined in the
REPL playground.

30 CHAPTER 8. TWO TYPES OF VARIABLES

9
The Type is Optional

As we showed in the previous lesson, when you create a new variable in Scala you can
explicitly declare its type, like this:

val count: Int = 1
val name: String = "Alvin"

However, you can generally leave the type off and Scala can infer it for you:

val count = 1
val name = "Alvin"

In most cases your code is easier to read when you leave the type off, so this inferred
form is preferred.

9.1 The explicit form feels verbose

For instance, in this example it’s obvious that the data type is Person, so there’s no need
to declare the type on the left side of the expression:

val p = new Person("Candy")

By contrast, when you put the type next to the variable name, the code feels unneces-
sarily verbose:

val p: Person = new Person("Leo")

In summary:

val p = new Person("Candy") // preferred
val p: Person = new Person("Candy") // unnecessarily verbose

31

32 CHAPTER 9. THE TYPE IS OPTIONAL

9.2 Use the explicit form when you need to be clear

One place where you’ll want to show the data type is when you want to be clear about
what you’re creating. That is, if you don’t explicitly declare the data type, the compiler
may make a wrong assumption about what you want to create. Some examples of this
are when youwant to create numbers with specific data types. We show this in the next
lesson.

10
A Few Built-In Types

Scala comes with the standard numeric data types you’d expect. In Scala all of these
data types are full-blown objects (not primitive data types).

These examples show how to declare variables of the basic numeric types:

val b: Byte = 1
val x: Int = 1
val l: Long = 1
val s: Short = 1
val d: Double = 2.0
val f: Float = 3.0

In the first four examples, if you don’t explicitly specify a type, the number 1will default
to an Int, so if you want one of the other data types — Byte, Long, or Short — you
need to explicitly declare those types, as shown. Numbers with a decimal (like 2.0) will
default to a Double, so if you want a Float you need to declare a Float, as shown in
the last example.

Because Int and Double are the default numeric types, you typically create them with-
out explicitly declaring the data type:

val i = 123 // defaults to Int
val x = 1.0 // defaults to Double

The REPL shows that those examples default to Int and Double:

scala> val i = 123
i: Int = 123

scala> val x = 1.0
x: Double = 1.0

33

34 CHAPTER 10. A FEW BUILT-IN TYPES

Those data types and their ranges are:

Data Type Possible Values
Boolean true or false

Byte 8-bit signed two’s complement integer (-2ˆ7 to 2ˆ7-1, inclusive)
-128 to 127

Short 16-bit signed two’s complement integer (-2ˆ15 to 2ˆ15-1, inclusive)
-32,768 to 32,767

Int 32-bit two’s complement integer (-2ˆ31 to 2ˆ31-1, inclusive)
-2,147,483,648 to 2,147,483,647

Long 64-bit two’s complement integer (-2ˆ63 to 2ˆ63-1, inclusive)
(-2ˆ63 to 2ˆ63-1, inclusive)

Float 32-bit IEEE 754 single-precision float
1.40129846432481707e-45 to 3.40282346638528860e+38

Double 64-bit IEEE 754 double-precision float
4.94065645841246544e-324d to 1.79769313486231570e+308d

Char 16-bit unsigned Unicode character (0 to 2ˆ16-1, inclusive)
0 to 65,535

String a sequence of Char

10.1 BigInt and BigDecimal

For large numbers Scala also includes the types BigInt and BigDecimal:

var b = BigInt(1234567890)
var b = BigDecimal(123456.789)

Agreat thing about BigInt and BigDecimal is that they support all the operators you’re
used to using with numeric types:

scala> var b = BigInt(1234567890)
b: scala.math.BigInt = 1234567890

scala> b + b
res0: scala.math.BigInt = 2469135780

scala> b * b
res1: scala.math.BigInt = 1524157875019052100

10.2. STRING AND CHAR 35

scala> b += 1

scala> println(b)
1234567891

10.2 String and Char

Scala also has String and Char data types, which you can generally declare with the
implicit form:

val name = "Bill"
val c = 'a'

Though once again, you can use the explicit form, if you prefer:

val name: String = "Bill"
val c: Char = 'a'

As shown, enclose strings in double-quotes and a character in single-quotes.

36 CHAPTER 10. A FEW BUILT-IN TYPES

11
Two Notes About Strings

Scala strings have a lot of nice features, but we want to take a moment to highlight two
features that we’ll use in the rest of this book. The first feature is that Scala has a nice,
Ruby-like way to merge multiple strings. Given these three variables:

val firstName = "John"
val mi = 'C'
val lastName = "Doe"

you can append them together like this, if you want to:

val name = firstName + " " + mi + " " + lastName

However, Scala provides this more convenient form:

val name = s"$firstName $mi $lastName"

This form creates a very readable way to print strings that contain variables:

println(s"Name: $firstName $mi $lastName")

As shown, all you have to do is to precede the string with the letter s, and then put a
$ symbol before your variable names inside the string. This feature is known as string
interpolation.

11.0.1 More features

String interpolation in Scala provides many more features. For example, you can also
enclose your variable names inside curly braces:

println(s"Name: ${firstName} ${mi} ${lastName}")

For some people that’s easier to read, but an even more important benefit is that you

37

38 CHAPTER 11. TWO NOTES ABOUT STRINGS

can put expressions inside the braces, as shown in this REPL example:

scala> println(s"1+1 = ${1+1}")
1+1 = 2

A few other benefits of string interpolation are:

• You can precede strings with the letter f, which lets you use printf style format-
ting inside strings

• The raw interpolator performs no escaping of literals (such as \n) within the
string

• You can create your own string interpolators

See the string interpolation documentation for more details.

11.1 Multiline strings

A second great feature of Scala strings is that you can create multiline strings by includ-
ing the string inside three double-quotes:

val speech = """Four score and
seven years ago
our fathers ..."""

That’s very helpful for when you need to work with multiline strings. One drawback
of this basic approach is that lines after the first line are indented, as you can see in the
REPL:

scala> val speech = """Four score and
| seven years ago
| our fathers ..."""

speech: String =
Four score and

seven years ago
our fathers ...

A simple way to fix this problem is to put a | symbol in front of all lines after the first
line, and call the stripMargin method after the string:

%7B%7Bsite.baseurl%7D%7D/overviews/core/string-interpolation.html

11.1. MULTILINE STRINGS 39

val speech = """Four score and
|seven years ago
|our fathers ...""".stripMargin

The REPL shows that when you do this, all of the lines are left-justified:

scala> val speech = """Four score and
| |seven years ago
| |our fathers ...""".stripMargin

speech: String =
Four score and
seven years ago
our fathers ...

Because this is what you generally want, this is a common way to create multiline
strings.

40 CHAPTER 11. TWO NOTES ABOUT STRINGS

12
Command-Line I/O

To get ready to show for loops, if expressions, and other Scala constructs, let’s take a
look at how to handle command-line input and output with Scala.

12.1 Writing output

As we’ve already shown, you write output to standard out (STDOUT) using println:

println("Hello, world")

That function adds a newline character after your string, so if you don’t want that, just
use print instead:

print("Hello without newline")

When needed, you can also write output to standard error (STDERR) like this:

System.err.println("yikes, an error happened")

Because println is so commonly used, there’s no need to import it. The
same is true of other commonly-used data types like String, Int, Float,
etc.

12.2 Reading input

There are several ways to read command-line input, but the easiest way is to use the
readLine method in the scala.io.StdIn package. To use it, you need to first import it,
like this:

import scala.io.StdIn.readLine

To demonstrate how this works, let’s create a little example. Put this source code in a
file named HelloInteractive.scala:

41

42 CHAPTER 12. COMMAND-LINE I/O

import scala.io.StdIn.readLine

object HelloInteractive extends App {

print("Enter your first name: ")
val firstName = readLine()

print("Enter your last name: ")
val lastName = readLine()

println(s"Your name is $firstName $lastName")

}

Then compile it with scalac:

$ scalac HelloInteractive.scala

Then run it with scala:

$ scala HelloInteractive

When you run the program and enter your first and last names at the prompts, the
interaction looks like this:

$ scala HelloInteractive
Enter your first name: Alvin
Enter your last name: Alexander
Your name is Alvin Alexander

12.2.1 A note about imports

As you saw in this application, you bring classes and methods into scope in Scala just
like you do with Java and other languages, with import statements:

import scala.io.StdIn.readLine

That import statement brings the readLine method into the current scope so you can
use it in the application.

13
Control Structures

Scala has the basic control structures you’d expect to find in a programming language,
including:

• if/then/else
• for loops
• try/catch/finally

It also has a few unique constructs, including:

• match expressions
• for expressions

We’ll demonstrate these in the following lessons.

43

44 CHAPTER 13. CONTROL STRUCTURES

14
The if/then/else Construct

A basic Scala if statement looks like this:

if (a == b) doSomething()

You can also write that statement like this:

if (a == b) {
doSomething()

}

The if/else construct looks like this:

if (a == b) {
doSomething()

} else {
doSomethingElse()

}

The complete Scala if/else-if/else expression looks like this:

if (test1) {
doX()

} else if (test2) {
doY()

} else {
doZ()

}

14.1 if expressions always return a result

A great thing about the Scala if construct is that it always returns a result. You can
ignore the result as we did in the previous examples, but a more common approach —

45

46 CHAPTER 14. THE IF/THEN/ELSE CONSTRUCT

especially in functional programming — is to assign the result to a variable:

val minValue = if (a < b) a else b

This is cool for several reasons, including the fact that it means that Scala doesn’t re-
quire a special “ternary” operator.

14.2 Aside: Expression-oriented programming

As a brief note about programming in general, when every expression youwrite returns
a value, that style is referred to as expression-oriented programming, or EOP. This is an
example of an expression:

val minValue = if (a < b) a else b

Conversely, lines of code that don’t return values are called statements, and they are
used for their side-effects. For example, these lines of code don’t return values, so they
are used for their side effects:

if (a == b) doSomething()
println("Hello")

The first example runs the doSomething method as a side effect when a is equal to
b. The second example is used for the side effect of writing a string to STDOUT. As
you learn more about Scala you’ll find yourself writing more expressions and fewer
statements. The differences between expressions and statements will also becomemore
apparent.

15
for Loops

In its most simple use, a Scala for loop can be used to iterate over the elements in a
collection. For example, given a sequence of integers:

val nums = Seq(1,2,3)

you can loop over them and print out their values like this:

for (n <- nums) println(n)

This is what the result looks like in the Scala REPL:

scala> val nums = Seq(1,2,3)
nums: Seq[Int] = List(1, 2, 3)

scala> for (n <- nums) println(n)
1
2
3

That example uses a sequence of integers, which has the data type Seq[Int]. Here’s a
list of strings which has the data type List[String]:

val people = List(
"Bill",
"Candy",
"Karen",
"Leo",
"Regina"

)

You print its values using a for loop just like the previous example:

47

48 CHAPTER 15. FOR LOOPS

for (p <- people) println(p)

Seq and List are two types of linear collections. In Scala these collection
classes are preferred over Array. (More on this later.)

15.1 The foreach method

For the purpose of iterating over a collection of elements and printing its contents
you can also use the foreach method that’s available to Scala collections classes. For
example, this is how you use foreach to print the previous list of strings:

people.foreach(println)

foreach is available on most collections classes, including sequences, maps, and sets.

15.2 Using for and foreach with Maps

You can also use for and foreach when working with a Scala Map (which is similar to
a Java HashMap). For example, given this Map of movie names and ratings:

val ratings = Map(
"Lady in the Water" -> 3.0,
"Snakes on a Plane" -> 4.0,
"You, Me and Dupree" -> 3.5

)

You can print the movie names and ratings using for like this:

for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")

Here’s what that looks like in the REPL:

scala> for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")
Movie: Lady in the Water, Rating: 3.0
Movie: Snakes on a Plane, Rating: 4.0
Movie: You, Me and Dupree, Rating: 3.5

In this example, name corresponds to each key in themap, and rating is the name that’s
assigned to each value in the map.

15.2. USING FOR AND FOREACHWITHMAPS 49

You can also print the ratings with foreach like this:

ratings.foreach {
case(movie, rating) => println(s"key: $movie, value: $rating")

}

50 CHAPTER 15. FOR LOOPS

16
for Expressions

If you recall what we wrote about Expression-Oriented Programming (EOP) and the
difference between expressions and statements, you’ll notice that in the previous lesson
we used the for keyword and foreach method as tools for side effects. We used them
to print the values in the collections to STDOUT using println. Java has similar key-
words, and many programmers used them for years without ever giving much thought
to how they could be improved.

Once you start workingwith Scala you’ll see that in functional programming languages
you can usemore powerful “for expressions” in addition to “for loops.” In Scala, a for
expression — which we’ll write as for-expression — is a different use of the for con-
struct. While a for-loop is used for side effects (such as printing output), a for-expression
is used to create new collections from existing collections.

For example, given this list of integers:

val nums = Seq(1,2,3)

You can create a new list of integers where all of the values are doubled, like this:

val doubledNums = for (n <- nums) yield n * 2

That expression can be read as, “For every number n in the list of numbers nums, double
each value, and then assign all of the new values to the variable doubledNums.” This is
what it looks like in the Scala REPL:

scala> val doubledNums = for (n <- nums) yield n * 2
doubledNums: Seq[Int] = List(2, 4, 6)

As the REPL output shows, the new list doubledNums contains these values:

List(2,4,6)

51

52 CHAPTER 16. FOR EXPRESSIONS

In summary, the result of the for-expression is that it creates a new variable named
doubledNums whose values were created by doubling each value in the original list,
nums.

16.1 Capitalizing a list of strings

You can use the same approach with a list of strings. For example, given this list of
lowercase strings:

val names = List("adam", "david", "frank")

You can create a list of capitalized strings with this for-expression:

val ucNames = for (name <- names) yield name.capitalize

The REPL shows how this works:

scala> val ucNames = for (name <- names) yield name.capitalize
ucNames: List[String] = List(Adam, David, Frank)

Success! Each name in the new variable ucNames is capitalized.

16.2 The yield keyword

Notice that both of those for-expressions use the yield keyword:

val doubledNums = for (n <- nums) yield n * 2

val ucNames = for (name <- names) yield name.capitalize

Using yield after for is the “secret sauce” that says, “I want to yield a new collection
from the existing collection that I’m iterating over in the for-expression, using the al-
gorithm shown.”

16.3. USING A BLOCK OF CODE AFTER YIELD 53

16.3 Using a block of code after yield

The code after the yield expression can be as long as necessary to solve the current
problem. For example, given a list of strings like this:

val names = List("_adam", "_david", "_frank")

Imagine that youwant to create a new list that has the capitalized names of each person.
To do that, you first need to remove the underscore character at the beginning of each
name, and then capitalize each name. To remove the underscore from each name, you
call drop(1) on each String. After you do that, you call the capitalize method on
each string. Here’s how you can use a for-expression to solve this problem:

val capNames = for (name <- names) yield {
val nameWithoutUnderscore = name.drop(1)
val capName = nameWithoutUnderscore.capitalize
capName

}

If you put that code in the REPL, you’ll see this result:

capNames: List[String] = List(Adam, David, Frank)

16.3.1 A shorter version of the solution

We show the verbose form of the solution in that example so you can see how to use
multiple lines of code after yield. However, for this particular example you can also
write the code like this, which is more of the Scala style:

val capNames = for (name <- names) yield name.drop(1).capitalize

You can also put curly braces around the algorithm, if you prefer:

val capNames = for (name <- names) yield { name.drop(1).capitalize }

54 CHAPTER 16. FOR EXPRESSIONS

17
match Expressions

Scala has a concept of a match expression. In the most simple case you can use a match
expression like a Java switch statement:

// i is an integer
i match {

case 1 => println("January")
case 2 => println("February")
case 3 => println("March")
case 4 => println("April")
case 5 => println("May")
case 6 => println("June")
case 7 => println("July")
case 8 => println("August")
case 9 => println("September")
case 10 => println("October")
case 11 => println("November")
case 12 => println("December")
// catch the default with a variable so you can print it
case _ => println("Invalid month")

}

As shown, with a match expression you write a number of case statements that you
use to match possible values. In this example we match the integer values 1 through
12. Any other value falls down to the _ case, which is the catch-all, default case.

match expressions are nice because they also return values, so rather than directly print-
ing a string as in that example, you can assign the string result to a new value:

val monthName = i match {
case 1 => "January"
case 2 => "February"
case 3 => "March"

55

56 CHAPTER 17. MATCH EXPRESSIONS

case 4 => "April"
case 5 => "May"
case 6 => "June"
case 7 => "July"
case 8 => "August"
case 9 => "September"
case 10 => "October"
case 11 => "November"
case 12 => "December"
case _ => "Invalid month"

}

Using a match expression to yield a result like this is a common use.

17.1 Aside: A quick look at Scala methods

Scala also makes it easy to use a match expression as the body of a method. We haven’t
shown how to write Scala methods yet, so as a brief introduction, here’s a method
named convertBooleanToStringMessage that takes a Boolean value and returns a
String:

def convertBooleanToStringMessage(bool: Boolean): String = {
if (bool) "true" else "false"

}

Hopefully you can see how thatmethod works, even though wewon’t go into its details.
These examples showhow itworkswhen you give it the Boolean values true and false:

scala> val answer = convertBooleanToStringMessage(true)
answer: String = true

scala> val answer = convertBooleanToStringMessage(false)
answer: String = false

17.2 Using a match expression as the body of a method

Now that you’ve seen an example of a Scalamethod, here’s a second example that works
just like the previous one, taking a Boolean value as an input parameter and returning

17.3. HANDLING ALTERNATE CASES 57

a String message. The big difference is that this method uses a match expression for
the body of the method:

def convertBooleanToStringMessage(bool: Boolean): String = bool match {
case true => "you said true"
case false => "you said false"

}

The body of that method is just two case statements, one that matches true and an-
other that matches false. Because those are the only possible Boolean values, there’s
no need for a default case statement.

This is how you call that method and then print its result:

val result = convertBooleanToStringMessage(true)
println(result)

Using a match expression as the body of a method is also a common use.

17.3 Handling alternate cases

match expressions are extremely powerful, and we’ll demonstrate a few other things
you can do with them.

match expressions let you handle multiple cases in a single case statement. To demon-
strate this, imagine that you want to evaluate “boolean equality” like the Perl program-
ming language handles it: a 0 or a blank string evaluates to false, and anything else
evaluates to true. This is how you write a method using a match expression that evalu-
ates to true and false in the manner described:

def isTrue(a: Any) = a match {
case 0 | "" => false
case _ => true

}

Because the input parameter a is defined to be the Any type — which is the root of all
Scala classes, like Object in Java — this method works with any data type that’s passed
in:

58 CHAPTER 17. MATCH EXPRESSIONS

scala> isTrue(0)
res0: Boolean = false

scala> isTrue("")
res1: Boolean = false

scala> isTrue(1.1F)
res2: Boolean = true

scala> isTrue(new java.io.File("/etc/passwd"))
res3: Boolean = true

The key part of this solution is that this one case statement lets both 0 and the empty
string evaluate to false:

case 0 | "" => false

Before we move on, here’s another example that shows many matches in each case
statement:

val evenOrOdd = i match {
case 1 | 3 | 5 | 7 | 9 => println("odd")
case 2 | 4 | 6 | 8 | 10 => println("even")
case _ => println("some other number")

}

Here’s another example that shows how to handle multiple strings in multiple case
statements:

cmd match {
case "start" | "go" => println("starting")
case "stop" | "quit" | "exit" => println("stopping")
case _ => println("doing nothing")

}

17.4 Using if expressions in case statements

Another great thing about match expressions is that you can use if expressions in case
statements for powerful pattern matching. In this example the second and third case

17.4. USING IF EXPRESSIONS IN CASE STATEMENTS 59

statements both use if expressions to match ranges of numbers:

count match {
case 1 => println("one, a lonely number")
case x if x == 2 || x == 3 => println("two's company, three's a crowd")
case x if x > 3 => println("4+, that's a party")
case _ => println("i'm guessing your number is zero or less")

}

Scala doesn’t require you to use parentheses in the if expressions, but you can use them
if you think that makes them more readable:

count match {
case 1 => println("one, a lonely number")
case x if (x == 2 || x == 3) => println("two's company, three's a crowd")
case x if (x > 3) => println("4+, that's a party")
case _ => println("i'm guessing your number is zero or less")

}

You can also write the code on the right side of the => on multiple lines if you think is
easier to read. Here’s one example:

count match {
case 1 =>

println("one, a lonely number")
case x if x == 2 || x == 3 =>

println("two's company, three's a crowd")
case x if x > 3 =>

println("4+, that's a party")
case _ =>

println("i'm guessing your number is zero or less")
}

Here’s a variation of that example that uses curly braces:

count match {
case 1 => {

println("one, a lonely number")
}
case x if x == 2 || x == 3 => {

60 CHAPTER 17. MATCH EXPRESSIONS

println("two's company, three's a crowd")
}
case x if x > 3 => {

println("4+, that's a party")
}
case _ => {

println("i'm guessing your number is zero or less")
}

}

Here are a few other examples of how you can use if expressions in case statements.
First, another example of how to match ranges of numbers:

i match {
case a if 0 to 9 contains a => println("0-9 range: " + a)
case b if 10 to 19 contains b => println("10-19 range: " + b)
case c if 20 to 29 contains c => println("20-29 range: " + c)
case _ => println("Hmmm...")

}

Lastly, this example shows how to reference class fields in if expressions:

stock match {
case x if (x.symbol == "XYZ" && x.price < 20) => buy(x)
case x if (x.symbol == "XYZ" && x.price > 50) => sell(x)
case x => doNothing(x)

}

17.5 Even more

match expressions are very powerful, and there are even more things you can do with
them, but hopefully these examples provide a good start towards using them.

18
try/catch/finally Expressions

Like Java, Scala has a try/catch/finally construct to let you catch and manage excep-
tions. Themain difference is that for consistency, Scala uses the same syntax that match
expressions use: case statements to match the different possible exceptions that can
occur.

18.1 A try/catch example

Here’s an example of Scala’s try/catch syntax. In this example, openAndReadAFile is a
method that does what its name implies: it opens a file and reads the text in it, assigning
the result to the variable named text:

var text = ""
try {

text = openAndReadAFile(filename)
} catch {

case e: FileNotFoundException => println("Couldn't find that file.")
case e: IOException => println("Had an IOException trying to read that file")

}

Scala uses the _java.io.*_ classes to work with files, so attempting to open and read
a file can result in both a FileNotFoundException and an IOException. Those two
exceptions are caught in the catch block of this example.

18.2 try, catch, and finally

The Scala try/catch syntax also lets you use a finally clause, which is typically used
when you need to close a resource. Here’s an example of what that looks like:

try {
// your scala code here

}

61

62 CHAPTER 18. TRY/CATCH/FINALLY EXPRESSIONS

catch {
case foo: FooException => handleFooException(foo)
case bar: BarException => handleBarException(bar)
case _: Throwable => println("Got some other kind of Throwable exception")

} finally {
// your scala code here, such as closing a database connection
// or file handle

}

18.3 More later

We’ll cover more details about Scala’s try/catch/finally syntax in later lessons, such as
in the “Functional Error Handling” lessons, but these examples demonstrate how the
syntax works. A great thing about the syntax is that it’s consistent with the match ex-
pression syntax. This makes your code consistent and easier to read, and you don’t
have to remember a special/different syntax.

19
Scala Classes

In support of object-oriented programming (OOP), Scala provides a class construct.
The syntax is much more concise than languages like Java and C#, but it’s also still easy
to use and read.

19.1 Basic class constructor

Here’s a Scala class whose constructor defines two parameters, firstName and last-
Name:

class Person(var firstName: String, var lastName: String)

Given that definition, you can create new Person instances like this:

val p = new Person("Bill", "Panner")

Defining parameters in a class constructor automatically creates fields in the class, and
in this example you can access the firstName and lastName fields like this:

println(p.firstName + " " + p.lastName)
Bill Panner

In this example, because both fields are defined as var fields, they’re also mutable,
meaning they can be changed. This is how you change them:

scala> p.firstName = "William"
p.firstName: String = William

scala> p.lastName = "Bernheim"
p.lastName: String = Bernheim

If you’re coming to Scala from Java, this Scala code:

63

64 CHAPTER 19. SCALA CLASSES

class Person(var firstName: String, var lastName: String)

is roughly the equivalent of this Java code:

public class Person {

private String firstName;
private String lastName;

public Person(String firstName, String lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

public String getFirstName() {
return this.firstName;

}

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return this.lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

}

19.2 val makes fields read-only

In that first example both fields were defined as var fields:

class Person(var firstName: String, var lastName: String)

That makes those fields mutable. You can also define them as val fields, which makes

19.3. CLASS CONSTRUCTORS 65

them immutable:

class Person(val firstName: String, val lastName: String)
--- ---

If you now try to change the first or last name of a Person instance, you’ll see an error:

scala> p.firstName = "Fred"
<console>:12: error: reassignment to val

p.firstName = "Fred"
^

scala> p.lastName = "Jones"
<console>:12: error: reassignment to val

p.lastName = "Jones"
^

Tip: If you use Scala to write OOP code, create your fields as var fields so
you canmutate them. When youwrite FP codewith Scala, you’ll generally
use case classes instead of classes like this. (More on this later.)

19.3 Class constructors

In Scala, the primary constructor of a class is a combination of:

• The constructor parameters

• Methods that are called in the body of the class

• Statements and expressions that are executed in the body of the class

Fields declared in the body of a Scala class are handled in a manner similar to Java;
they’re assigned when the class is first instantiated.

This Person class demonstrates several of the things you can do inside the body of a
class:

class Person(var firstName: String, var lastName: String) {

println("the constructor begins")

66 CHAPTER 19. SCALA CLASSES

// 'public' access by default
var age = 0

// some class fields
private val HOME = System.getProperty("user.home")

// some methods
override def toString(): String = s"$firstName $lastName is $age years old"

def printHome(): Unit = println(s"HOME = $HOME")
def printFullName(): Unit = println(this)

printHome()
printFullName()
println("you've reached the end of the constructor")

}

This code in the Scala REPL demonstrates how this class works:

scala> val p = new Person("Kim", "Carnes")
the constructor begins
HOME = /Users/al
Kim Carnes is 0 years old
you've reached the end of the constructor
p: Person = Kim Carnes is 0 years old

scala> p.age
res0: Int = 0

scala> p.age = 36
p.age: Int = 36

scala> p
res1: Person = Kim Carnes is 36 years old

scala> p.printHome
HOME = /Users/al

19.4. OTHER SCALA CLASS EXAMPLES 67

scala> p.printFullName
Kim Carnes is 36 years old

When you come to Scala from a more verbose language this constructor approach
might feel a little unusual at first, but once you understand and write a couple of classes
with it, you’ll find it to be logical and convenient.

19.4 Other Scala class examples

Before we move on, here are a few other examples of Scala classes:

class Pizza (var crustSize: Int, var crustType: String)

// a stock, like AAPL or GOOG
class Stock(var symbol: String, var price: BigDecimal)

// a network socket
class Socket(val timeout: Int, val linger: Int) {

override def toString = s"timeout: $timeout, linger: $linger"
}

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String

)

68 CHAPTER 19. SCALA CLASSES

20
Auxiliary Class Constructors

You define auxiliary Scala class constructors by defining methods that are named this.
There are only a few rules to know:

• Each auxiliary constructor must have a different signature (different parameter
lists)

• Each constructor must call one of the previously defined constructors

Here’s an example of a Pizza class that defines multiple constructors:

val DefaultCrustSize = 12
val DefaultCrustType = "THIN"

// the primary constructor
class Pizza (var crustSize: Int, var crustType: String) {

// one-arg auxiliary constructor
def this(crustSize: Int) {

this(crustSize, DefaultCrustType)
}

// one-arg auxiliary constructor
def this(crustType: String) {

this(DefaultCrustSize, crustType)
}

// zero-arg auxiliary constructor
def this() {

this(DefaultCrustSize, DefaultCrustType)
}

override def toString = s"A $crustSize inch pizza with a $crustType crust"

69

70 CHAPTER 20. AUXILIARY CLASS CONSTRUCTORS

}

With all of those constructors defined, you can create pizza instances in several differ-
ent ways:

val p1 = new Pizza(DefaultCrustSize, DefaultCrustType)
val p2 = new Pizza(DefaultCrustSize)
val p3 = new Pizza(DefaultCrustType)
val p4 = new Pizza

We encourage you to paste that class and those examples into the Scala REPL to see
how they work.

20.1 Notes

There are two important notes to make about this example:

• The DefaultCrustSize and DefaultCrustType variables are not a preferredway
to handle this situation, but because we haven’t shown how to handle enumera-
tions yet, we use this approach to keep things simple.

• Auxiliary class constructors are a great feature, but because you can use default
values for constructor parameters, you won’t need to use this feature very often.
The next lesson demonstrates how using default parameter values like this often
makes auxiliary constructors unnecessary:

class Pizza(
var crustSize: Int = DefaultCrustSize,
var crustType: String = DefaultCrustType

)

21
Supplying Default Values for
Constructor Parameters

Scala lets you supply default values for constructor parameters. For example, in previ-
ous lessons we showed that you can define a Socket class like this:

class Socket(var timeout: Int, var linger: Int) {
override def toString = s"timeout: $timeout, linger: $linger"

}

That’s nice, but you can make this class better by supplying default values for the time-
out and linger parameters:

class Socket(var timeout: Int = 2000, var linger: Int = 3000) {
override def toString = s"timeout: $timeout, linger: $linger"

}

By supplying default values for the parameters, you can now create a new Socket in a
variety of different ways:

new Socket()
new Socket(1000)
new Socket(4000, 6000)

Here’s what those examples look like in the REPL:

scala> new Socket()
res0: Socket = timeout: 2000, linger: 3000

scala> new Socket(1000)
res1: Socket = timeout: 1000, linger: 3000

scala> new Socket(4000, 6000)

71

72
CHAPTER 21. SUPPLYING DEFAULT VALUES FOR CONSTRUCTOR

PARAMETERS

res2: Socket = timeout: 4000, linger: 6000

21.0.1 Benefits

Supplying default constructor parameters has at least two benefits:

• You provide preferred, default values for your parameters
• You let consumers of your class override those values for their own needs

As shown in the examples, a third benefit is that it lets consumers construct new Socket
instances in at least three different ways, as if it had three class constructors.

21.1 Bonus: Named parameters

Another nice thing about Scala is that you can use named parameters when creating a
new instance of a class. For instance, given this class:

class Socket(var timeout: Int, var linger: Int) {
override def toString = s"timeout: $timeout, linger: $linger"

}

you can create a new Socket like this:

val s = new Socket(timeout=2000, linger=3000)

This feature comes in handy from time to time, such as when all of the class construc-
tor parameters have the same type, such as the Int parameters in this example. For
example, some people find that this code:

val s = new Socket(timeout=2000, linger=3000)

is more readable than this code:

val s = new Socket(2000, 3000)

22
A First Look at Scala Methods

In Scala,methods are defined inside classes (just like Java), but for testing purposes you
can also create them in the REPL. This lesson will show some examples of methods so
you can see what the syntax looks like.

22.1 Defining a method that takes one input parameter

This is how you define a method named double that takes one integer input parameter
named a and returns the doubled value of that integer:

def double(a: Int) = a * 2

In that example themethod name and signature are shown on the left side of the = sign:

def double(a: Int) = a * 2

def is the keyword you use to define a method, the method name is double, and the
input parameter a has the type Int, which is Scala’s integer data type.

The body of the function is shown on the right side, and in this example it simply
doubles the value of the input parameter a:

def double(a: Int) = a * 2

After you paste that method into the REPL, you can call it (invoke it) by giving it an
Int value:

scala> double(2)
res0: Int = 4

scala> double(10)

73

74 CHAPTER 22. A FIRST LOOK AT SCALA METHODS

res1: Int = 20

22.2 Showing the method’s return type

The previous example didn’t show the method’s return type, but you can show it:

def double(a: Int): Int = a * 2

Writing a method like this explicitly declares the method’s return type. Some people
prefer to explicitly declare method return types because it makes the code easier to
maintain weeks, months, and years in the future.

If you paste that method into the REPL, you’ll see that it works just like the previous
method.

22.3 Methods with multiple input parameters

To show something a little more complex, here’s a method that takes two input param-
eters:

def add(a: Int, b: Int) = a + b

Here’s the same method, with the method’s return type explicitly shown:

def add(a: Int, b: Int): Int = a + b

Here’s a method that takes three input parameters:

def add(a: Int, b: Int, c: Int): Int = a + b + c

22.4 Multiline methods

When a method is only one line long you can use the format shown, but when the
method body gets longer, you put the multiple lines inside curly braces:

def addThenDouble(a: Int, b: Int): Int = {
val sum = a + b

22.4. MULTILINE METHODS 75

val doubled = sum * 2
doubled

}

If you paste that code into the REPL, you’ll see that it works just like the previous
examples:

scala> addThenDouble(1, 1)
res0: Int = 4

76 CHAPTER 22. A FIRST LOOK AT SCALA METHODS

23
Enumerations (and a Complete Pizza

Class)

If we demonstrate enumerations next, we can also show you what an example Pizza
class looks like when written in an object-orientedmanner. So that’s the path we’ll take.

Enumerations are a useful tool for creating small groups of constants, things like the
days of the week, months in a year, suits in a deck of cards, etc., situations where you
have a group of related, constant values.

Becausewe’re jumping ahead a little bit, we’re not going to explain this syntax toomuch,
but this is how you create an enumeration for the days of a week:

sealed trait DayOfWeek
case object Sunday extends DayOfWeek
case object Monday extends DayOfWeek
case object Tuesday extends DayOfWeek
case object Wednesday extends DayOfWeek
case object Thursday extends DayOfWeek
case object Friday extends DayOfWeek
case object Saturday extends DayOfWeek

As shown, just declare a base trait and then extend that trait with as many case objects
as needed.

Similarly, this is how you create an enumeration for the suits in a deck of cards:

sealed trait Suit
case object Clubs extends Suit
case object Spades extends Suit
case object Diamonds extends Suit
case object Hearts extends Suit

77

78 CHAPTER 23. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

We’ll discuss traits and case objects later in this book, but if you’ll trust us for now that
this is how you create enumerations, we can then create a little OOP version of a Pizza
class in Scala.

23.1 Pizza-related enumerations

Given that (very brief) introduction to enumerations, we can now create pizza-related
enumerations like this:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

Those enumerations provide a nice way to work with pizza toppings, crust sizes, and
crust types.

23.2 A sample Pizza class

Given those enumerations, we can define a Pizza class like this:

class Pizza (
var crustSize: CrustSize = MediumCrustSize,
var crustType: CrustType = RegularCrustType

) {

23.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 79

// ArrayBuffer is a mutable sequence (list)
val toppings = scala.collection.mutable.ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = toppings += t
def removeTopping(t: Topping): Unit = toppings -= t
def removeAllToppings(): Unit = toppings.clear()

}

If you save all of that code— including the enumerations— in a file named Pizza.scala,
you’ll see that you can compile it with the usual command:

$ scalac Pizza.scala

That code will create a lot of individual files, so we recommend putting it
in a separate directory.

There’s nothing to run yet because this class doesn’t have a main method, but …

23.3 A complete Pizza class with a main method

If you’re ready to have some fun, copy all of the following source code and paste it into
a file named Pizza.scala:

import scala.collection.mutable.ArrayBuffer

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

80 CHAPTER 23. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

class Pizza (
var crustSize: CrustSize = MediumCrustSize,
var crustType: CrustType = RegularCrustType

) {

// ArrayBuffer is a mutable sequence (list)
val toppings = ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = toppings += t
def removeTopping(t: Topping): Unit = toppings -= t
def removeAllToppings(): Unit = toppings.clear()

override def toString(): String = {
s"""
|Crust Size: $crustSize
|Crust Type: $crustType
|Toppings: $toppings
""".stripMargin

}
}

// a little "driver" app
object PizzaTest extends App {

val p = new Pizza
p.addTopping(Cheese)
p.addTopping(Pepperoni)
println(p)

}

Notice how you can put all of the enumerations, a Pizza class, and a PizzaTest object
in the same file. That’s a very convenient Scala feature.

Next, compile that code with the usual command:

23.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 81

$ scalac Pizza.scala

Now, run the PizzaTest object with this command:

$ scala PizzaTest

The output should look like this:

$ scala PizzaTest

Crust Size: MediumCrustSize
Crust Type: RegularCrustType
Toppings: ArrayBuffer(Cheese, Pepperoni)

That code combines several different concepts — including two things we haven’t dis-
cussed yet in the import statement and the ArrayBuffer— but if you have experience
with Java and other languages, hopefully it’s not too much to throw at you at one time.

At this point we encourage you to work with that code as desired. Make changes to
the code, and try using the removeTopping and removeAllToppingsmethods to make
sure they work the way you expect them to work.

82 CHAPTER 23. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

24
Scala Traits and Abstract Classes

Scala traits are a great feature of the language. As you’ll see in the following lessons, you
can use them just like a Java interface, and you can also use them like abstract classes
that have real methods. Scala classes can also extend and “mix in” multiple traits.

Scala also has the concept of an abstract class, and we’ll show when you should use an
abstract class instead of a trait.

83

84 CHAPTER 24. SCALA TRAITS AND ABSTRACT CLASSES

25
Using Scala Traits as Interfaces

25.1 Using Scala Traits as Interfaces

One way to use a Scala trait is like the original Java interface, where you define the
desired interface for some piece of functionality, but you don’t implement any behavior.

25.2 A simple example

As an example to get us started, imagine that you want to write some code to model
animals like dogs and cats, any animal that has a tail. In Scala you write a trait to start
that modeling process like this:

trait TailWagger {
def startTail(): Unit
def stopTail(): Unit

}

That code declares a trait named TailWagger that states that any class that extends
TailWagger should implement startTail and stopTail methods. Both of those
methods take no input parameters and have no return value. This code is equivalent
to this Java interface:

public interface TailWagger {
public void startTail();
public void stopTail();

}

25.3 Extending a trait

Given this trait:

trait TailWagger {

85

86 CHAPTER 25. USING SCALA TRAITS AS INTERFACES

def startTail(): Unit
def stopTail(): Unit

}

you can write a class that extends the trait and implements those methods like this:

class Dog extends TailWagger {
// the implemented methods
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

}

You can also write those methods like this, if you prefer:

class Dog extends TailWagger {
def startTail() = println("tail is wagging")
def stopTail() = println("tail is stopped")

}

Notice that in either case, you use the extends keyword to create a class that extends a
single trait:

class Dog extends TailWagger { ...

If you paste the TailWagger trait and Dog class into the Scala REPL, you can test the
code like this:

scala> val d = new Dog
d: Dog = Dog@234e9716

scala> d.startTail
tail is wagging

scala> d.stopTail
tail is stopped

This demonstrates how you implement a single Scala trait with a class that extends the
trait.

25.4. EXTENDING MULTIPLE TRAITS 87

25.4 Extending multiple traits

Scala lets you create very modular code with traits. For example, you can break down
the attributes of animals into small, logical, modular units:

trait Speaker {
def speak(): String

}

trait TailWagger {
def startTail(): Unit
def stopTail(): Unit

}

trait Runner {
def startRunning(): Unit
def stopRunning(): Unit

}

Once you have those small pieces, you can create a Dog class by extending all of them,
and implementing the necessary methods:

class Dog extends Speaker with TailWagger with Runner {

// Speaker
def speak(): String = "Woof!"

// TailWagger
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

// Runner
def startRunning(): Unit = println("I'm running")
def stopRunning(): Unit = println("Stopped running")

}

Notice how extends and with are used to create a class from multiple traits:

class Dog extends Speaker with TailWagger with Runner {

88 CHAPTER 25. USING SCALA TRAITS AS INTERFACES

------- ---- ----

Key points of this code:

• Use extends to extend the first trait
• Use with to extend subsequent traits

Fromwhat you’ve seen so far, Scala traits work just like Java interfaces. But there’smore
…

26
Using Scala Traits Like Abstract Classes

In the previous lesson we showed how to use Scala traits like the original Java inter-
face, but they have much more functionality than that. You can also add real, working
methods to them and use them like abstract classes, or more accurately, as mixins.

26.1 A first example

To demonstrate this, here’s a Scala trait that has a concrete method named speak, and
an abstract method named comeToMaster:

trait Pet {
def speak = println("Yo") // concrete implementation of a speak method
def comeToMaster(): Unit // abstract

}

When a class extends a trait, each defined method must be implemented, so here’s a
class that extends Pet and defines comeToMaster:

class Dog(name: String) extends Pet {
def comeToMaster(): Unit = println("Woo-hoo, I'm coming!")

}

Unless you want to override speak, there’s no need to redefine it, so this is a perfectly
complete Scala class. Now you can create a new Dog like this:

val d = new Dog("Zeus")

Then you can call speak and comeToMaster. This is what it looks like in the REPL:

scala> val d = new Dog("Zeus")
d: Dog = Dog@4136cb25

scala> d.speak

89

90 CHAPTER 26. USING SCALA TRAITS LIKE ABSTRACT CLASSES

Yo

scala> d.comeToMaster
Woo-hoo, I'm coming!

26.2 Overriding an implemented method

A class can also override a method that’s defined in a trait. Here’s an example:

class Cat extends Pet {
// override 'speak'
override def speak(): Unit = println("meow")
def comeToMaster(): Unit = println("That's not gonna happen.")

}

The REPL shows how this works:

scala> val c = new Cat
c: Cat = Cat@1953f27f

scala> c.speak
meow

scala> c.comeToMaster
That's not gonna happen.

26.3 Mixing in multiple traits that have behaviors

A great thing about Scala traits is that you can mix multiple traits that have behaviors
into classes. For example, here’s a combination of traits, one of which defines an ab-
stract method, and the others that define concrete method implementations:

trait Speaker {
def speak(): String //abstract

}

trait TailWagger {
def startTail(): Unit = println("tail is wagging")

26.3. MIXING IN MULTIPLE TRAITS THAT HAVE BEHAVIORS 91

def stopTail(): Unit = println("tail is stopped")
}

trait Runner {
def startRunning(): Unit = println("I'm running")
def stopRunning(): Unit = println("Stopped running")

}

Now you can create a Dog class that extends all of those traits while providing behavior
for the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {
def speak(): String = "Woof!"

}

And here’s a Cat class:

class Cat extends Speaker with TailWagger with Runner {
def speak(): String = "Meow"
override def startRunning(): Unit = println("Yeah ... I don't run")
override def stopRunning(): Unit = println("No need to stop")

}

The REPL shows that this all works like you’d expect it to work. First, a Dog:

scala> d.speak
res0: String = Woof!

scala> d.startRunning
I'm running

scala> d.startTail
tail is wagging

Then a Cat:

scala> val c = new Cat
c: Cat = Cat@1b252afa

scala> c.speak

92 CHAPTER 26. USING SCALA TRAITS LIKE ABSTRACT CLASSES

res1: String = Meow

scala> c.startRunning
Yeah ... I don't run

scala> c.startTail
tail is wagging

26.4 Mixing traits in on the fly

As a last note, a very interesting thing you can dowith traits that have concretemethods
is mix them into classes on the fly. For example, given these traits:

trait TailWagger {
def startTail(): Unit = println("tail is wagging")
def stopTail(): Unit = println("tail is stopped")

}

trait Runner {
def startRunning(): Unit = println("I'm running")
def stopRunning(): Unit = println("Stopped running")

}

and this Dog class:

class Dog(name: String)

you can create a Dog instance that mixes in those traits when you create a Dog instance:

val d = new Dog("Fido") with TailWagger with Runner

Once again the REPL shows that this works:

scala> val d = new Dog("Fido") with TailWagger with Runner
d: Dog with TailWagger with Runner = $anon$1@50c8d274

scala> d.startTail
tail is wagging

26.4. MIXING TRAITS IN ON THE FLY 93

scala> d.startRunning
I'm running

This example works because all of the methods in the TailWagger and Runner traits
are defined (they’re not abstract).

94 CHAPTER 26. USING SCALA TRAITS LIKE ABSTRACT CLASSES

27
Abstract Classes

Scala also has a concept of an abstract class that is similar to Java’s abstract class. But
because traits are so powerful, you rarely need to use an abstract class. In fact, you only
need to use an abstract class when:

• You want to create a base class that requires constructor arguments

• Your Scala code will be called from Java code

27.1 Scala traits don’t allow constructor parameters

Regarding the first reason, Scala traits don’t allow constructor parameters:

// this won’t compile
trait Animal(name: String)

Therefore, you need to use an abstract class whenever a base behavior must have con-
structor parameters:

abstract class Animal(name: String)

However, be aware that a class can extend only one abstract class.

27.2 When Scala code will be called from Java code

Regarding the second point — the second time when you’ll need to use an abstract
class — because Java doesn’t know anything about Scala traits, if you want to call your
Scala code from Java code, you’ll need to use an abstract class rather than a trait.

95

96 CHAPTER 27. ABSTRACT CLASSES

27.3 Abstract class syntax

The abstract class syntax is similar to the trait syntax. For example, here’s an abstract
class named Pet that’s similar to the Pet trait we defined in the previous lesson:

abstract class Pet (name: String) {
def speak(): Unit = println("Yo") // concrete implementation
def comeToMaster(): Unit // abstract method

}

Given that abstract Pet class, you can define a Dog class like this:

class Dog(name: String) extends Pet(name) {
override def speak() = println("Woof")
def comeToMaster() = println("Here I come!")

}

The REPL shows that this all works as advertised:

scala> val d = new Dog("Rover")
d: Dog = Dog@51f1fe1c

scala> d.speak
Woof

scala> d.comeToMaster
Here I come!

27.3.1 Notice how name was passed along

All of that code is similar to Java, so we won’t explain it in detail. One thing to notice
is how the name constructor parameter is passed from the Dog class constructor to the
Pet constructor:

class Dog(name: String) extends Pet(name) {

Remember that Pet is declared to take name as a constructor parameter:

abstract class Pet (name: String) { ...

27.3. ABSTRACT CLASS SYNTAX 97

Therefore, this example shows how to pass the constructor parameter from the Dog
class to the Pet abstract class. You can verify that this works with this code:

abstract class Pet (name: String) {
def speak: Unit = println(s"My name is $name")

}

class Dog(name: String) extends Pet(name)

val d = new Dog("Fido")
d.speak

We encourage you to copy and paste that code into the REPL to be sure that it works
as expected, and then experiment with it as desired.

98 CHAPTER 27. ABSTRACT CLASSES

28
Scala Collections

If you’re coming to Scala from Java, the best thing you can do is forget about the Java
collections classes and use the Scala collections classes as they’re intended to be used.
As one author of this book has said, “Speaking from personal experience, when I first
started working with Scala I tried to use Java collections classes in my Scala code, and
all that did was slow down my progress.”

28.1 The main Scala collections classes

The main Scala collections classes you’ll use on a regular basis are:

Class Description

ArrayBuffer an indexed, mutable sequence
List a linear (linked list), immutable sequence
Vector an indexed, immutable sequence
Map the base Map (key/value pairs) class
Set the base Set class

Map and Set come in both mutable and immutable versions.

We’ll demonstrate the basics of these classes in the following lessons.

In the following lessons on Scala collections classes, whenever we use the
word immutable, it’s safe to assume that the class is intended for use in a
functional programming (FP) style. With these classes you don’t modify
the collection; you apply functional methods to the collection to create a
new result. You’ll see what this means in the examples that follow.

99

100 CHAPTER 28. SCALA COLLECTIONS

29
The ArrayBuffer Class

If you’re anOOPdeveloper coming to Scala from Java, the ArrayBuffer class will prob-
ably be most comfortable for you, so we’ll demonstrate it first. It’s a mutable sequence,
so you can use its methods to modify its contents, and those methods are similar to
methods on Java sequences.

To use an ArrayBuffer you must first import it:

import scala.collection.mutable.ArrayBuffer

After it’s imported into the local scope, you create an empty ArrayBuffer like this:

val ints = ArrayBuffer[Int]()
val names = ArrayBuffer[String]()

Once you have an ArrayBuffer you add elements to it in a variety of ways:

val ints = ArrayBuffer[Int]()
ints += 1
ints += 2

The REPL shows how += works:

scala> ints += 1
res0: ints.type = ArrayBuffer(1)

scala> ints += 2
res1: ints.type = ArrayBuffer(1, 2)

That’s just one way create an ArrayBuffer and add elements to it. You can also create
an ArrayBuffer with initial elements like this:

val nums = ArrayBuffer(1, 2, 3)

101

102 CHAPTER 29. THE ARRAYBUFFER CLASS

Here are a few ways you can add more elements to this ArrayBuffer:

// add one element
nums += 4

// add multiple elements
nums += 5 += 6

// add multiple elements from another collection
nums ++= List(7, 8, 9)

You remove elements from an ArrayBuffer with the -= and --= methods:

// remove one element
nums -= 9

// remove multiple elements
nums -= 7 -= 8

// remove multiple elements using another collection
nums --= Array(5, 6)

Here’s what all of those examples look like in the REPL:

scala> import scala.collection.mutable.ArrayBuffer

scala> val nums = ArrayBuffer(1, 2, 3)
val nums: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3)

scala> nums += 4
val res0: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

scala> nums += 5 += 6
val res1: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

scala> nums ++= List(7, 8, 9)
val res2: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9)

scala> nums -= 9

29.1. MOREWAYS TOWORKWITH ARRAYBUFFER 103

val res3: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

scala> nums -= 7 -= 8
val res4: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4, 5, 6)

scala> nums --= Array(5, 6)
val res5: ArrayBuffer[Int] = ArrayBuffer(1, 2, 3, 4)

29.1 More ways to work with ArrayBuffer

As a brief overview, here are several methods you can use with an ArrayBuffer:

val a = ArrayBuffer(1, 2, 3) // ArrayBuffer(1, 2, 3)
a.append(4) // ArrayBuffer(1, 2, 3, 4)
a.append(5, 6) // ArrayBuffer(1, 2, 3, 4, 5, 6)
a.appendAll(Seq(7,8)) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)
a.clear // ArrayBuffer()

val a = ArrayBuffer(9, 10) // ArrayBuffer(9, 10)
a.insert(0, 8) // ArrayBuffer(8, 9, 10)
a.insertAll(0, Vector(4, 5, 6, 7)) // ArrayBuffer(4, 5, 6, 7, 8, 9, 10)
a.prepend(3) // ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10)
a.prepend(1, 2) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
a.prependAll(Array(0)) // ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.remove(0) // ArrayBuffer(b, c, d, e, f, g)
a.remove(2, 3) // ArrayBuffer(b, c, g)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)
a.trimStart(2) // ArrayBuffer(c, d, e, f, g)
a.trimEnd(2) // ArrayBuffer(c, d, e)

104 CHAPTER 29. THE ARRAYBUFFER CLASS

30
The List Class

The List class is a linear, immutable sequence. All this means is that it’s a linked-list
that you can’t modify. Any time you want to add or remove List elements, you create
a new List from an existing List.

30.1 Creating Lists

This is how you create an initial List:

val ints = List(1, 2, 3)
val names = List("Joel", "Chris", "Ed")

You can also declare the List’s type, if you prefer, though it generally isn’t necessary:

val ints: List[Int] = List(1, 2, 3)
val names: List[String] = List("Joel", "Chris", "Ed")

30.2 Adding elements to a List

Because List is immutable, you can’t add new elements to it. Instead you create a new
list by prepending or appending elements to an existing List. For instance, given this
List:

val a = List(1,2,3)

You prepend elements to a List like this:

val b = 0 +: a

and this:

val b = List(-1, 0) ++: a

105

https://www.scala-lang.org/api/current/scala/collection/immutable/List.html

106 CHAPTER 30. THE LIST CLASS

The REPL shows how this works:

scala> val b = 0 +: a
b: List[Int] = List(0, 1, 2, 3)

scala> val b = List(-1, 0) ++: a
b: List[Int] = List(-1, 0, 1, 2, 3)

You can also append elements to a List, but because List is a singly-linked list, you
should really only prepend elements to it; appending elements to it is a relatively slow
operation, especially when you work with large sequences.

Tip: If you want to prepend and append elements to an immutable se-
quence, use Vector instead.

Because List is a linked-list class, you shouldn’t try to access the elements of large lists
by their index value. For instance, if you have a List with one million elements in it,
accessing an element like myList(999999) will take a long time. If you want to access
elements like this, use a Vector or ArrayBuffer instead.

30.3 How to remember the method names

These days, IDEs help us out tremendously, but one way to remember those method
names is to think that the : character represents the side that the sequence is on, so
when you use +: you know that the list needs to be on the right, like this:

0 +: a

Similarly, when you use :+ you know the list needs to be on the left:

a :+ 4

There aremore technical ways to think about this, this can be a simpleway to remember
the method names.

One good thing about these method names: they’re consistent. The same method
names are used with other immutable sequence classes, such as Seq and Vector.

30.4. HOW TO LOOP OVER LISTS 107

30.4 How to loop over lists

We showed how to loop over lists earlier in this book, but it’s worth showing the syntax
again. Given a List like this:

val names = List("Joel", "Chris", "Ed")

you can print each string like this:

for (name <- names) println(name)

This is what it looks like in the REPL:

scala> for (name <- names) println(name)
Joel
Chris
Ed

A great thing about this approach is that it works with all sequence classes, including
ArrayBuffer, List, Seq, Vector, etc.

30.5 A little bit of history

If you’re interested in a little bit of history, the List class is very similar to the List
class from the Lisp programming language. Indeed, in addition to creating a List like
this:

val ints = List(1, 2, 3)

you can also create the exact same list this way:

val list = 1 :: 2 :: 3 :: Nil

The REPL shows how this works:

scala> val list = 1 :: 2 :: 3 :: Nil
list: List[Int] = List(1, 2, 3)

This works because a List is a singly-linked list that ends with the Nil element.

108 CHAPTER 30. THE LIST CLASS

31
The Vector Class

TheVector class is an indexed, immutable sequence. The “indexed” part of the descrip-
tionmeans that you can access Vector elements very rapidly by their index value, such
as accessing listOfPeople(999999).

In general, except for the difference that Vector is indexed and List is not, the two
classes work the same, so we’ll run through these examples quickly.

Here are a few ways you can create a Vector:

val nums = Vector(1, 2, 3, 4, 5)

val strings = Vector("one", "two")

val peeps = Vector(
Person("Bert"),
Person("Ernie"),
Person("Grover")

)

Because Vector is immutable, you can’t add new elements to it. Instead you create
a new sequence by appending or prepending elements to an existing Vector. For in-
stance, given this Vector:

val a = Vector(1,2,3)

you append elements like this:

val b = a :+ 4

and this:

val b = a ++ Vector(4, 5)

109

https://www.scala-lang.org/api/current/scala/collection/immutable/Vector.html

110 CHAPTER 31. THE VECTOR CLASS

The REPL shows how this works:

scala> val a = Vector(1,2,3)
a: Vector[Int] = List(1, 2, 3)

scala> val b = a :+ 4
b: Vector[Int] = List(1, 2, 3, 4)

scala> val b = a ++ Vector(4, 5)
b: Vector[Int] = List(1, 2, 3, 4, 5)

You can also prepend elements like this:

val b = 0 +: a

and this:

val b = Vector(-1, 0) ++: a

Once again the REPL shows how this works:

scala> val b = 0 +: a
b: Vector[Int] = List(0, 1, 2, 3)

scala> val b = Vector(-1, 0) ++: a
b: Vector[Int] = List(-1, 0, 1, 2, 3)

Because Vector is not a linked-list (like List), you can prepend and append elements
to it, and the speed of both approaches should be similar.

Finally, you loop over elements in a Vector just like you do with an ArrayBuffer or
List:

scala> val names = Vector("Joel", "Chris", "Ed")
val names: Vector[String] = Vector(Joel, Chris, Ed)

scala> for (name <- names) println(name)
Joel
Chris
Ed

32
The Map Class

The Map class documentation describes a Map as an iterable sequence that consists of
pairs of keys and values. A simple Map looks like this:

val states = Map(
"AK" -> "Alaska",
"IL" -> "Illinois",
"KY" -> "Kentucky"

)

Scala has both mutable and immutable Map classes. In this lesson we’ll show how to
use the mutable class.

32.1 Creating a mutable Map

To use the mutable Map class, first import it:

import scala.collection.mutable.Map

Then you can create a Map like this:

val states = collection.mutable.Map("AK" -> "Alaska")

32.2 Adding elements to a Map

Now you can add a single element to the Map with +=, like this:

states += ("AL" -> "Alabama")

You also add multiple elements using +=:

states += ("AR" -> "Arkansas", "AZ" -> "Arizona")

111

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/maps.html

112 CHAPTER 32. THE MAP CLASS

You can add elements from another Map using ++=:

states ++= Map("CA" -> "California", "CO" -> "Colorado")

The REPL shows how these examples work:

scala> val states = collection.mutable.Map("AK" -> "Alaska")
states: scala.collection.mutable.Map[String,String] = Map(AK -> Alaska)

scala> states += ("AL" -> "Alabama")
res0: states.type = Map(AL -> Alabama, AK -> Alaska)

scala> states += ("AR" -> "Arkansas", "AZ" -> "Arizona")
res1: states.type = Map(AZ -> Arizona, AL -> Alabama, AR -> Arkansas, AK -> Alaska)

scala> states ++= Map("CA" -> "California", "CO" -> "Colorado")
res2: states.type = Map(CO -> Colorado, AZ -> Arizona, AL -> Alabama, CA -> California, AR -> Arkansas, AK -> Alaska)

32.3 Removing elements from a Map

You remove elements from a Map using -= and --= and specifying the key values, as
shown in the following examples:

states -= "AR"
states -= ("AL", "AZ")
states --= List("AL", "AZ")

The REPL shows how these examples work:

scala> states -= "AR"
res3: states.type = Map(CO -> Colorado, AZ -> Arizona, AL -> Alabama, CA -> California, AK -> Alaska)

scala> states -= ("AL", "AZ")
res4: states.type = Map(CO -> Colorado, CA -> California, AK -> Alaska)

scala> states --= List("AL", "AZ")
res5: states.type = Map(CO -> Colorado, CA -> California, AK -> Alaska)

32.4. UPDATING MAP ELEMENTS 113

32.4 Updating Map elements

You update Map elements by reassigning their key to a new value:

states("AK") = "Alaska, A Really Big State"

The REPL shows the current Map state:

scala> states("AK") = "Alaska, A Really Big State"

scala> states
res6: scala.collection.mutable.Map[String,String] = Map(CO -> Colorado, CA -> California, AK -> Alaska, A Really Big State)

32.5 Traversing a Map

There are several different ways to iterate over the elements in a map. Given a sample
map:

val ratings = Map(
"Lady in the Water"-> 3.0,
"Snakes on a Plane"-> 4.0,
"You, Me and Dupree"-> 3.5

)

a nice way to loop over all of the map elements is with this for loop syntax:

for ((k,v) <- ratings) println(s"key: $k, value: $v")

Using a match expression with the foreach method is also very readable:

ratings.foreach {
case(movie, rating) => println(s"key: $movie, value: $rating")

}

The ratingsmapdata in this example comes from the old-but-good book,
Programming Collective Intelligence.

114 CHAPTER 32. THE MAP CLASS

32.6 See also

There are other ways to work with Scala Maps, and a nice collection of Map classes for
different needs. See the Map class documentation for more information and examples.

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/maps.html

33
The Set Class

The Scala Set class is an iterable collection with no duplicate elements.

Scala has both mutable and immutable Set classes. In this lesson we’ll show how to
use the mutable class.

33.1 Adding elements to a Set

To use a mutable Set, first import it:

val set = scala.collection.mutable.Set[Int]()

You add elements to a mutable Set with the +=, ++=, and add methods. Here are a few
examples:

set += 1
set += 2 += 3
set ++= Vector(4, 5)

The REPL shows how these examples work:

scala> val set = scala.collection.mutable.Set[Int]()
val set: scala.collection.mutable.Set[Int] = Set()

scala> set += 1
val res0: scala.collection.mutable.Set[Int] = Set(1)

scala> set += 2 += 3
val res1: scala.collection.mutable.Set[Int] = Set(1, 2, 3)

scala> set ++= Vector(4, 5)
val res2: scala.collection.mutable.Set[Int] = Set(1, 5, 2, 3, 4)

115

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/sets.html

116 CHAPTER 33. THE SET CLASS

Notice that if you try to add a value to a set that’s already in it, the attempt is quietly
ignored:

scala> set += 2
val res3: scala.collection.mutable.Set[Int] = Set(1, 5, 2, 3, 4)

Set also has an addmethod that returns true if an element is added to a set, and false
if it wasn’t added. The REPL shows how it works:

scala> set.add(6)
res4: Boolean = true

scala> set.add(5)
res5: Boolean = false

33.2 Deleting elements from a Set

You remove elements from a set using the -= and --=methods, as shown in the follow-
ing examples:

scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// one element
scala> set -= 1
res0: scala.collection.mutable.Set[Int] = Set(2, 4, 3, 5)

// two or more elements (-= has a varargs field)
scala> set -= (2, 3)
res1: scala.collection.mutable.Set[Int] = Set(4, 5)

// multiple elements defined in another sequence
scala> set --= Array(4,5)
res2: scala.collection.mutable.Set[Int] = Set()

There are more methods for working with sets, including clear and remove, as shown
in these examples:

scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)

33.3. MORE SETS 117

set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

// clear
scala> set.clear()

scala> set
res0: scala.collection.mutable.Set[Int] = Set()

// remove
scala> val set = scala.collection.mutable.Set(1, 2, 3, 4, 5)
set: scala.collection.mutable.Set[Int] = Set(2, 1, 4, 3, 5)

scala> set.remove(2)
res1: Boolean = true

scala> set
res2: scala.collection.mutable.Set[Int] = Set(1, 4, 3, 5)

scala> set.remove(40)
res3: Boolean = false

33.3 More Sets

Scala has several more Set classes, including SortedSet, LinkedHashSet, and more.
Please see the Set class documentation for more details on those classes.

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/sets.html

118 CHAPTER 33. THE SET CLASS

34
Anonymous Functions

Earlier in this book you saw that you can create a list of integers like this:

val ints = List(1,2,3)

When you want to create a larger list, you can also create them with the List class
range method, like this:

val ints = List.range(1, 10)

That code creates ints as a list of integers whose values range from 1 to 10. You can
see the result in the REPL:

scala> val ints = List.range(1, 10)
x: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9)

In this lesson we’ll use lists like these to demonstrate a feature of functional program-
ming known as anonymous functions. It will help to understand how these work before
we demonstrate the most common Scala collections methods.

34.1 Examples

An anonymous function is like a little mini-function. For example, given a list like this:

val ints = List(1,2,3)

You can create a new list by doubling each element in ints, like this:

val doubledInts = ints.map(_ * 2)

This is what that example looks like in the REPL:

scala> val doubledInts = ints.map(_ * 2)

119

120 CHAPTER 34. ANONYMOUS FUNCTIONS

doubledInts: List[Int] = List(2, 4, 6)

As that shows, doubledInts is now the list, List(2, 4, 6). In this example, this code
is an anonymous function:

_ * 2

This is a shorthand way of saying, “Multiply an element by 2.”

Once you’re comfortable with Scala, this is a common way to write anonymous func-
tions, but if you prefer, you can also write them using longer forms. Besides writing
that code like this:

val doubledInts = ints.map(_ * 2)

you can also write it like this:

val doubledInts = ints.map((i: Int) => i * 2)
val doubledInts = ints.map(i => i * 2)

All three lines have exactly the same meaning: Double each element in ints to create
a new list, doubledInts.

The _ character in Scala is something of a wildcard character. You’ll see it
used in several different places. In this case it’s a shorthand way of saying,
“An element from the list, ints.”

Before going any further, it’s worth mentioning that this map example is the equivalent
of this Java code:

List<Integer> ints = new ArrayList<>(Arrays.asList(1, 2, 3));

// the `map` process
List<Integer> doubledInts = ints.stream()

.map(i -> i * 2)

.collect(Collectors.toList());

The map example shown is also the same as this Scala code:

val doubledInts = for (i <- ints) yield i * 2

34.2. ANONYMOUS FUNCTIONS WITH THE FILTERMETHOD 121

34.2 Anonymous functions with the filter method

Another good way to show anonymous functions is with the filter method of the
List class. Given this List again:

val ints = List.range(1, 10)

This is how you create a new list of all integers whose value is greater than 5:

val x = ints.filter(_ > 5)

This is how you create a new list whose values are all less than 5:

val x = ints.filter(_ < 5)

And as a little more complicated example, this is how you create a new list that contains
only even values, by using the modulus operator:

val x = ints.filter(_ % 2 == 0)

If that’s a little confusing, remember that this example can also be written in these other
ways:

val x = ints.filter((i: Int) => i % 2 == 0)
val x = ints.filter(i => i % 2 == 0)

This is what the previous examples look like in the REPL:

scala> val x = ints.filter(_ > 5)
x: List[Int] = List(6, 7, 8, 9)

scala> val x = ints.filter(_ < 5)
x: List[Int] = List(1, 2, 3, 4)

scala> val x = ints.filter(_ % 2 == 0)
x: List[Int] = List(2, 4, 6, 8)

34.3 Key points

The key points of this lesson are:

122 CHAPTER 34. ANONYMOUS FUNCTIONS

• You can write anonymous functions as little snippets of code

• You can use them with methods on the List class like map and filter

• With these little snippets of code and powerful methods like those, you can cre-
ate a lot of functionality with very little code

The Scala collections classes contain many methods like map and filter, and they’re a
powerful way to create very expressive code.

34.4 Bonus: Digging a little deeper

You may be wondering how the map and filter examples work. The short answer is
that when map is invoked on a list of integers — a List[Int] to be more precise —
map expects to receive a function that transforms one Int value into another Int value.
Because map expects a function (or method) that transforms one Int to another Int,
this approach also works:

val ints = List(1,2,3)
def double(i: Int): Int = i * 2 //a method that doubles an Int
val doubledInts = ints.map(double)

The last two lines of that example are the same as this:

val doubledInts = ints.map(_ * 2)

Similarly, when called on a List[Int], the filtermethod expects to receive a function
that takes an Int and returns a Boolean value. Therefore, given amethod that’s defined
like this:

def lessThanFive(i: Int): Boolean = if (i < 5) true else false

or more concisely, like this:

def lessThanFive(i: Int): Boolean = (i < 5)

this filter example:

val ints = List.range(1, 10)
val y = ints.filter(lessThanFive)

34.4. BONUS: DIGGING A LITTLE DEEPER 123

is the same as this example:

val y = ints.filter(_ < 5)

124 CHAPTER 34. ANONYMOUS FUNCTIONS

35
Common Sequence Methods

A great strength of the Scala collections classes is that they come with dozens of pre-
built methods. The benefit of this is that you no longer need to write custom for loops
every time you need to work on a collection. (If that’s not enough of a benefit, it also
means that you no longer have to read custom for loops written by other developers.)

Because there are so many methods available to you, they won’t all be shown here.
Instead, just some of the most commonly-used methods will be shown, including:

• map

• filter

• foreach

• head

• tail

• take, takeWhile

• drop, dropWhile

• find

• reduce, fold

The following methods will work on all of the collections “sequence” classes, includ-
ing Array, ArrayBuffer, List, Vector, etc., but these examples will use a List unless
otherwise specified.

35.1 Note: The methods don’t mutate the collection

As a very important note, none of these methods mutate the collection that they’re
called on. They all work in a functional style, so they return a new collection with the
modified results.

125

126 CHAPTER 35. COMMON SEQUENCE METHODS

35.2 Sample lists

The following examples will use these lists:

val nums = (1 to 10).toList
val names = List("joel", "ed", "chris", "maurice")

This is what those lists look like in the REPL:

scala> val nums = (1 to 10).toList
nums: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> val names = List("joel", "ed", "chris", "maurice")
names: List[String] = List(joel, ed, chris, maurice)

35.3 map

The mapmethod steps through each element in the existing list, applying the algorithm
you supply to each element, one at a time; it then returns a new list with all of the
modified elements.

Here’s an example of the map method being applied to the nums list:

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

Aswe showed in the lesson on anonymous functions, you can alsowrite the anonymous
function like this:

scala> val doubles = nums.map(i => i * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

However, in this lesson we’ll always use the first, shorter form.

With that background, here’s an example of the map method being applied to the nums
and names lists:

scala> val capNames = names.map(_.capitalize)
capNames: List[String] = List(Joel, Ed, Chris, Maurice)

35.4. FILTER 127

scala> val doubles = nums.map(_ * 2)
doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

scala> val lessThanFive = nums.map(_ < 5)
lessThanFive: List[Boolean] = List(true, true, true, true, false, false, false, false, false, false)

As that last example shows, it’s perfectly legal (and very common) to use map to return
a list with a different type (List[Boolean]) from the original type (List[Int]).

35.4 filter

The filtermethod creates a new, filtered list from the given list. Here are a few exam-
ples:

scala> val lessThanFive = nums.filter(_ < 5)
lessThanFive: List[Int] = List(1, 2, 3, 4)

scala> val evens = nums.filter(_ % 2 == 0)
evens: List[Int] = List(2, 4, 6, 8, 10)

scala> val shortNames = names.filter(_.length <= 4)
shortNames: List[String] = List(joel, ed)

35.5 foreach

The foreachmethod is used to loop over all elements in a collection. As wementioned
in a previous lesson, foreach is used for side-effects, such as printing information.
Here’s an example with the names list:

scala> names.foreach(println)
joel
ed
chris
maurice

The nums list is a little long, so you may not want to print out all of those elements. But
a great thing about Scala’s approach is that you can chain methods together to solve

128 CHAPTER 35. COMMON SEQUENCE METHODS

problems like this. For example, this is one way to print the first three elements from
nums:

nums.filter(_ < 4).foreach(println)

The REPL shows the result:

scala> nums.filter(_ < 4).foreach(println)
1
2
3

35.6 head

The head method comes from Lisp and functional programming languages. It’s used
to print the first element (the head element) of a list:

scala> nums.head
res0: Int = 1

scala> names.head
res1: String = joel

Because a String is a sequence of characters, you can also treat it like a list. This is how
head works on these strings:

scala> "foo".head
res2: Char = f

scala> "bar".head
res3: Char = b

head is a great method to work with, but as a word of caution it can also throw an
exception when called on an empty collection:

scala> val emptyList = List[Int]()
val emptyList: List[Int] = List()

scala> emptyList.head

35.7. TAIL 129

java.util.NoSuchElementException: head of empty list

35.7 tail

The tail method also comes from Lisp and functional programming languages. It’s
used to print every element in a list after the head element. A few examples:

scala> nums.tail
res0: List[Int] = List(2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> names.tail
res1: List[String] = List(ed, chris, maurice)

Just like head, tail also works on strings:

scala> "foo".tail
res2: String = oo

scala> "bar".tail
res3: String = ar

Note that like head, tail will also throw an exception when called on an empty collec-
tion:

scala> emptyList.tail
java.lang.UnsupportedOperationException: tail of empty list

35.8 take, takeWhile

The take and takeWhile methods give you a nice way of taking the elements out of a
list that you want to create a new list. This is take:

scala> nums.take(1)
res0: List[Int] = List(1)

scala> nums.take(2)
res1: List[Int] = List(1, 2)

130 CHAPTER 35. COMMON SEQUENCE METHODS

scala> names.take(1)
res2: List[String] = List(joel)

scala> names.take(2)
res3: List[String] = List(joel, ed)

And this is takeWhile:

scala> nums.takeWhile(_ < 5)
res4: List[Int] = List(1, 2, 3, 4)

scala> names.takeWhile(_.length < 5)
res5: List[String] = List(joel, ed)

35.9 drop, dropWhile

drop and dropWhile are essentially the opposite of take and takeWhile. This is drop:

scala> nums.drop(1)
res0: List[Int] = List(2, 3, 4, 5, 6, 7, 8, 9, 10)

scala> nums.drop(5)
res1: List[Int] = List(6, 7, 8, 9, 10)

scala> names.drop(1)
res2: List[String] = List(ed, chris, maurice)

scala> names.drop(2)
res3: List[String] = List(chris, maurice)

And this is dropWhile:

scala> nums.dropWhile(_ < 5)
res4: List[Int] = List(5, 6, 7, 8, 9, 10)

scala> names.dropWhile(_ != "chris")
res5: List[String] = List(chris, maurice)

35.10. REDUCE 131

35.10 reduce

When you hear the term, “map reduce,” the “reduce” part refers tomethods like reduce.
It takes a function (or anonymous function) and applies that function to successive
elements in the list.

The best way to explain reduce is to create a little helper method you can pass into it.
For example, this is an add method that adds two integers together, and also gives us
some nice debug output:

def add(x: Int, y: Int): Int = {
val theSum = x + y
println(s"received $x and $y, their sum is $theSum")
theSum

}

Now, given that method and this list:

val a = List(1,2,3,4)

this is what happens when you pass the add method into reduce:

scala> a.reduce(add)
received 1 and 2, their sum is 3
received 3 and 3, their sum is 6
received 6 and 4, their sum is 10
res0: Int = 10

As that result shows, reduce uses add to reduce the list a into a single value, in this case,
the sum of the integers in the list.

Once you get used to reduce, you’ll write a “sum” algorithm like this:

scala> a.reduce(_ + _)
res0: Int = 10

Similarly, this is what a “product” algorithm looks like:

scala> a.reduce(_ * _)
res1: Int = 24

132 CHAPTER 35. COMMON SEQUENCE METHODS

That might be a little mind-blowing if you’ve never seen it before, but after a while
you’ll get used to it.

Before moving on, an important part to know about reduce is that — as
its name implies — it’s used to reduce a collection down to a single value.

35.11 Even more!

There are literally dozens of additional methods on the Scala sequence classes that will
keep you from ever needing to write another for loop. However, because this is a
simple introduction book they won’t all be covered here. For more information, see
the collections overview of sequence traits.

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/seqs.html

36
Common Map Methods

In this lesson we’ll demonstrate some of the most commonly used Map methods. In
these initial examples we’ll use an immutable Map, and Scala also has a mutable Map
class that you can modify in place, and it’s demonstrated a little later in this lesson.

For these examples we won’t break the Map methods down into individual sections;
we’ll just provide a brief comment before each method.

Given this immutable Map:

val m = Map(
1 -> "a",
2 -> "b",
3 -> "c",
4 -> "d"

)

Here are some examples of methods available to that Map:

// how to iterate over Map elements
scala> for ((k,v) <- m) printf("key: %s, value: %s\n", k, v)
key: 1, value: a
key: 2, value: b
key: 3, value: c
key: 4, value: d

// how to get the keys from a Map
scala> val keys = m.keys
keys: Iterable[Int] = Set(1, 2, 3, 4)

// how to get the values from a Map
scala> val values = m.values
val values: Iterable[String] = MapLike.DefaultValuesIterable(a, b, c, d)

133

134 CHAPTER 36. COMMONMAP METHODS

// how to test if a Map contains a value
scala> val contains3 = m.contains(3)
contains3: Boolean = true

// how to transform Map values
scala> val ucMap = m.transform((k,v) => v.toUpperCase)
ucMap: scala.collection.immutable.Map[Int,String] = Map(1 -> A, 2 -> B, 3 -> C, 4 -> D)

// how to filter a Map by its keys
scala> val twoAndThree = m.view.filterKeys(Set(2,3)).toMap
twoAndThree: scala.collection.immutable.Map[Int,String] = Map(2 -> b, 3 -> c)

// how to take the first two elements from a Map
scala> val firstTwoElements = m.take(2)
firstTwoElements: scala.collection.immutable.Map[Int,String] = Map(1 -> a, 2 -> b)

Note that the last example probably only makes sense for a sorted Map.

36.1 Mutable Map examples

Here are a few examples of methods that are available on the mutable Map class. Given
this initial mutable Map:

val states = scala.collection.mutable.Map(
"AL" -> "Alabama",
"AK" -> "Alaska"

)

Here are some things you can do with a mutable Map:

// add elements with +=
states += ("AZ" -> "Arizona")
states += ("CO" -> "Colorado", "KY" -> "Kentucky")

// remove elements with -=
states -= "KY"
states -= ("AZ", "CO")

36.2. SEE ALSO 135

// update elements by reassigning them
states("AK") = "Alaska, The Big State"

// retain elements by supplying a function that operates on
// the keys and/or values
states.retain((k,v) => k == "AK")

36.2 See also

There are many more things you can do with maps. See the Map class documentation
for more details and examples.

%7B%7Bsite.baseurl%7D%7D/overviews/collections-2.13/maps.html

136 CHAPTER 36. COMMONMAP METHODS

37
A Few Miscellaneous Items

In this section we’ll cover a few miscellaneous items about Scala:

• Tuples
• A Scala OOP example of a pizza restaurant order-entry system

137

138 CHAPTER 37. A FEWMISCELLANEOUS ITEMS

38
Tuples

A tuple is a neat class that gives you a simple way to store heterogeneous (different) items
in the same container. For example, assuming that you have a class like this:

class Person(var name: String)

Instead of having to create an ad-hoc class to store things in, like this:

class SomeThings(i: Int, s: String, p: Person)

you can just create a tuple like this:

val t = (3, "Three", new Person("Al"))

As shown, just put some elements inside parentheses, and you have a tuple. Scala tuples
can contain between two and 22 items, and they’re useful for those times when you just
need to combine a few things together, and don’t want the baggage of having to define
a class, especially when that class feels a little “artificial” or phony.

Technically, Scala 2.x has classes named Tuple2, Tuple3…up to Tuple22.
As a practical matter you rarely need to know this, but it’s also good to
know what’s going on under the hood. (And this architecture is being
improved in Scala 3.)

38.1 A few more tuple details

Here’s a two-element tuple:

scala> val d = ("Maggie", 30)
d: (String, Int) = (Maggie,30)

Notice that it contains two different types. Here’s a three-element tuple:

139

140 CHAPTER 38. TUPLES

scala> case class Person(name: String)
defined class Person

scala> val t = (3, "Three", new Person("David"))
t: (Int, java.lang.String, Person) = (3,Three,Person(David))

There are a few ways to access tuple elements. One approach is to access them by
element number, where the number is preceded by an underscore:

scala> t._1
res1: Int = 3

scala> t._2
res2: java.lang.String = Three

scala> t._3
res3: Person = Person(David)

Another cool approach is to access them like this:

scala> val(x, y, z) = (3, "Three", new Person("David"))
x: Int = 3
y: String = Three
z: Person = Person(David)

Technically this approach involves a form of pattern-matching, and it’s a great way to
assign tuple elements to variables.

38.2 Returning a tuple from a method

A place where this is nice is when you want to return multiple values from a method.
For example, here’s a method that returns a tuple:

def getStockInfo = {
// other code here ...
("NFLX", 100.00, 101.00) // this is a Tuple3

}

Now you can call that method and assign variable names to the return values:

38.3. TUPLES AREN’T COLLECTIONS 141

val (symbol, currentPrice, bidPrice) = getStockInfo

The REPL demonstrates how this works:

scala> val (symbol, currentPrice, bidPrice) = getStockInfo
symbol: String = NFLX
currentPrice: Double = 100.0
bidPrice: Double = 101.0

For cases like this where it feels like overkill to create a class for the method’s return
type, a tuple is very convenient.

38.3 Tuples aren’t collections

Technically, Scala 2.x tuples aren’t collections classes, they’re just a convenient little
container. Because they aren’t a collection, they don’t have methods like map, filter,
etc.

142 CHAPTER 38. TUPLES

39
An OOP Example

This lesson shares an example of an OOP application written with Scala. The example
shows code you might write for an order-entry system for a pizza store.

As shown earlier in the book, you create enumerations in Scala like this:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

A nice thing about Scala is that even though we haven’t discussed sealed traits or case
objects, you can probably still figure out how this code works.

39.1 A few classes

Given those enumerations, you can now start to create a few pizza-related classes for
an order-entry system. First, here’s a Pizza class:

import scala.collection.mutable.ArrayBuffer

143

144 CHAPTER 39. AN OOP EXAMPLE

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
var toppings: ArrayBuffer[Topping]

)

Next, here’s an Order class, where an Order consists of a mutable list of pizzas and a
Customer:

class Order (
var pizzas: ArrayBuffer[Pizza],
var customer: Customer

)

Here’s a Customer class to work with that code:

class Customer (
var name: String,
var phone: String,
var address: Address

)

Finally, here’s an Address class:

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String,
var zipCode: String

)

So far those classes just look like data structures — like a struct in C — so let’s add a
little behavior.

39.2. ADDING BEHAVIOR TO PIZZA 145

39.2 Adding behavior to Pizza

For themost part anOOP Pizza class needs a fewmethods to add and remove toppings,
and adjust the crust size and type. Here’s a Pizza class with a few added methods to
handle those behaviors:

class Pizza (
var crustSize: CrustSize,
var crustType: CrustType,
val toppings: ArrayBuffer[Topping]

) {

def addTopping(t: Topping): Unit = toppings += t
def removeTopping(t: Topping): Unit = toppings -= t
def removeAllToppings(): Unit = toppings.clear()

}

You can also argue that a pizza should be able to calculate its ownprice, so here’s another
method you could add to that class:

def getPrice(
toppingsPrices: Map[Topping, Int],
crustSizePrices: Map[CrustSize, Int],
crustTypePrices: Map[CrustType, Int]

): Int = ???

Note that this is a perfectly legal method. The ??? syntax is often used as a teaching
tool, and sometimes you use it as a method-sketching tool to say, “This is what my
method signature looks like, but I don’t want to write the method body yet.” A great
thing for those times is that this code compiles.

That being said, don’t call that method. If you do, you’ll get a NotImple-
mentedError, which is very descriptive of the situation.

39.3 Adding behavior to Order

You should be able to do a few things with an order, including:

• Add and remove pizzas

146 CHAPTER 39. AN OOP EXAMPLE

• Update customer information

• Get the order price

Here’s an Order class that lets you do those things:

class Order (
val pizzas: ArrayBuffer[Pizza],
var customer: Customer

) {

def addPizza(p: Pizza): Unit = pizzas += p
def removePizza(p: Pizza): Unit = pizzas -= p

// need to implement these
def getBasePrice(): Int = ???
def getTaxes(): Int = ???
def getTotalPrice(): Int = ???

}

Once again, for the purposes of this example, we’re not concernedwith how to calculate
the price of an order.

39.4 Testing those classes

You can use a little “driver” class to test those classes. With the addition of a printOrder
method on the Order class and a toString method in the Pizza class, you’ll find that
the code shown works as advertised:

import scala.collection.mutable.ArrayBuffer

object MainDriver extends App {

val p1 = new Pizza (
MediumCrustSize,
ThinCrustType,
ArrayBuffer(Cheese)

)

39.4. TESTING THOSE CLASSES 147

val p2 = new Pizza (
LargeCrustSize,
ThinCrustType,
ArrayBuffer(Cheese, Pepperoni, Sausage)

)

val address = new Address (
"123 Main Street",
"Apt. 1",
"Talkeetna",
"Alaska",
"99676"

)

val customer = new Customer (
"Alvin Alexander",
"907-555-1212",
address

)

val o = new Order(
ArrayBuffer(p1, p2),
customer

)

o.addPizza(
new Pizza (

SmallCrustSize,
ThinCrustType,
ArrayBuffer(Cheese, Mushrooms)

)
)

// print the order
o.printOrder

}

148 CHAPTER 39. AN OOP EXAMPLE

39.5 Experiment with the code yourself

To experiment with this on your own, please see the PizzaOopExample project in this
book’s GitHub repository, which you can find at this URL:

• github.com/alvinj/HelloScalaExamples

To compile this project it will help to either (a) use IntelliJ IDEA or Eclipse, or (b) know
how to use the Scala Build Tool.

https://github.com/alvinj/HelloScalaExamples
http://www.scala-sbt.org

40
SBT and ScalaTest

In the next few lessons you’ll see a couple of tools that are commonly used in Scala
projects:

• The SBT build tool
• ScalaTest, a code testing framework

We’ll start by showing how to use SBT, and then you’ll see how to use ScalaTest and
SBT together to build and test your Scala projects.

149

http://www.scala-sbt.org
http://www.scalatest.org

150 CHAPTER 40. SBT AND SCALATEST

41
The Scala Build Tool (SBT)

You can use several different tools to build your Scala projects, including Ant, Maven,
Gradle, and more. But a tool named SBT was the first build tool that was specifically
created for Scala, and these days it’s supported by Lightbend, the company that was
co-founded by Scala creator Martin Odersky that also maintains Akka, the Play web
framework, and more.

If you haven’t already installed SBT, here’s a link to its download page.

41.1 The SBT directory structure

Like Maven, SBT uses a standard project directory structure. If you use that standard
directory structure you’ll find that it’s relatively simple to build your first projects.

The first thing to know is that underneath your main project directory, SBT expects a
directory structure that looks like this:

build.sbt
project/
src/
-- main/

|-- java/
|-- resources/
|-- scala/

|-- test/
|-- java/
|-- resources/
|-- scala/

target/

151

http://www.scala-sbt.org
https://www.lightbend.com
http://www.scala-sbt.org/download.html

152 CHAPTER 41. THE SCALA BUILD TOOL (SBT)

41.2 Creating a “Hello, world” SBT project directory structure

Creating this directory structure is pretty simple, and you can use a shell script like
sbtmkdirs to create new projects. But you don’t have to use that script; assuming that
you’re using a Unix/Linux system, you can just use these commands to create your first
SBT project directory structure:

mkdir HelloWorld
cd HelloWorld
mkdir -p src/{main,test}/{java,resources,scala}
mkdir project target

If you run a find . command after running those commands, you should see this
result:

$ find .
.
./project
./src
./src/main
./src/main/java
./src/main/resources
./src/main/scala
./src/test
./src/test/java
./src/test/resources
./src/test/scala
./target

If you see that, you’re in great shape for the next step.

There are other ways to create the files and directories for an SBT project.
One way is to use the sbt new command, which is documented here on
scala-sbt.org. That approach isn’t shown here because some of the files it
creates are more complicated than necessary for an introduction like this.

41.3 Creating a first build.sbt file

At this point you only need two more things to run a “Hello, world” project:

https://alvinalexander.com/sbtmkdirs
http://www.scala-sbt.org/1.x/docs/Hello.html
http://www.scala-sbt.org/1.x/docs/Hello.html

41.4. A “HELLO, WORLD” PROGRAM 153

• A build.sbt file
• A Hello.scala file

For a little project like this, the build.sbt file only needs to contain a few lines, like this:

name := "HelloWorld"
version := "1.0"
scalaVersion := "{{ site.scala-version }}"

Because SBTprojects use a standard directory structure, SBT already knows everything
else it needs to know.

Now you just need to add a little “Hello, world” program.

41.4 A “Hello, world” program

In large projects, all of your Scala source code files will go under the src/main/scala
and src/test/scala directories, but for a little sample project like this, you can put your
source code file in the root directory of your project. Therefore, create a file named
HelloWorld.scala in the root directory with these contents:

object HelloWorld extends App {
println("Hello, world")

}

Now you can use SBT to compile your project, where in this example, your project
consists of that one file. Use the sbt run command to compile and run your project.
When you do so, you’ll see output that looks like this:

$ sbt run

Updated file /Users/al/Projects/Scala/Hello/project/build.properties setting sbt.version to: 0.13.15
[warn] Executing in batch mode.
[warn] For better performance, hit [ENTER] to switch to interactive mode, or
[warn] consider launching sbt without any commands, or explicitly passing 'shell'
[info] Loading project definition from /Users/al/Projects/Scala/Hello/project
[info] Updating {file:/Users/al/Projects/Scala/Hello/project/}hello-build...
[info] Resolving org.fusesource.jansi#jansi;1.4 ...
[info] Done updating.

154 CHAPTER 41. THE SCALA BUILD TOOL (SBT)

[info] Set current project to Hello (in build file:/Users/al/Projects/Scala/Hello/)
[info] Updating {file:/Users/al/Projects/Scala/Hello/}hello...
[info] Resolving jline#jline;2.14.5 ...
[info] Done updating.
[info] Compiling 1 Scala source to /Users/al/Projects/Scala/Hello/target/scala-2.12/classes...
[info] Running HelloWorld
Hello, world
[success] Total time: 4 s

The first time you run sbt it needs to download some things and can take a while to
run, but after that it gets much faster. As the first comment in that output shows, it’s
also faster to run SBT interactively. To do that, first run the sbt command by itself:

> sbt
[info] Loading project definition from /Users/al/Projects/Scala/Hello/project
[info] Set current project to Hello (in build file:/Users/al/Projects/Scala/Hello/)

The execute its run command like this:

> run
[info] Running HelloWorld
Hello, world
[success] Total time: 0 s

There, that’s much faster.

If you type help at the SBT command prompt you’ll see a bunch of other commands
you can run. But for now, just type exit to leave the SBT shell. You can also press
CTRL-D instead of typing exit.

41.5 See also

Here’s a list of other build tools you can use to build Scala projects are:

• Ant

• Gradle

• Maven

• Fury

http://ant.apache.org/
https://gradle.org/
https://maven.apache.org/
https://fury.build

41.5. SEE ALSO 155

• Mill

http://www.lihaoyi.com/mill

156 CHAPTER 41. THE SCALA BUILD TOOL (SBT)

42
Using ScalaTest with SBT

ScalaTest is one of the main testing libraries for Scala projects, and in this lesson you’ll
see how to create a Scala project that uses ScalaTest. You’ll also be able to compile, test,
and run the project with SBT.

42.1 Creating the project directory structure

As with the previous lesson, create an SBT project directory structure for a project
named HelloScalaTest with the following commands:

mkdir HelloScalaTest
cd HelloScalaTest
mkdir -p src/{main,test}/{java,resources,scala}
mkdir lib project target

42.2 Creating the build.sbt file

Next, create a build.sbt file in the root directory of your project with these contents:

name := "HelloScalaTest"
version := "1.0"
scalaVersion := "{{site.scala-version}}"

libraryDependencies ++= Seq(
"org.scalactic" %% "scalactic" % "3.0.8",
"org.scalatest" %% "scalatest" % "3.0.8" % "test"

)

The first three lines of this file are essentially the same as the first example, and the
libraryDependencies lines tell SBT to include the dependencies (jar files) that are
needed to run ScalaTest:

157

http://www.scalatest.org

158 CHAPTER 42. USING SCALATEST WITH SBT

libraryDependencies ++= Seq(
"org.scalactic" %% "scalactic" % "3.0.4",
"org.scalatest" %% "scalatest" % "3.0.4" % "test"

)

The ScalaTest documentation has always been good, and you can always
find the up to date information on what those lines should look like on
the Installing ScalaTest page.

42.3 Create a Scala file

Next, create a Scala program that you can use to demonstrate ScalaTest. First, from
the root directory of your project, create a directory under src/main/scala named sim-
pletest:

$ mkdir src/main/scala/simpletest

Then, inside that directory, create a file named Hello.scala with these contents:

package simpletest

object Hello extends App {
val p = new Person("Alvin Alexander")
println(s"Hello ${p.name}")

}

class Person(var name: String)

There isn’t much that can go wrong with that source code, but it provides a simple way
to demonstrate ScalaTest. At this point you can run your project with the sbt run
command, where your output should look like this:

> sbt run

[warn] Executing in batch mode.
[warn] For better performance, hit [ENTER] to switch to interactive mode, or
[warn] consider launching sbt without any commands, or explicitly passing 'shell'
...
...

http://www.scalatest.org/install

42.4. YOUR FIRST SCALATEST TESTS 159

[info] Compiling 1 Scala source to /Users/al/Projects/Scala/HelloScalaTest/target/scala-2.12/classes...
[info] Running simpletest.Hello
Hello Alvin Alexander
[success] Total time: 4 s

Now let’s create a ScalaTest file.

42.4 Your first ScalaTest tests

ScalaTest is very flexible, and there are a lot of different ways to write tests, but a simple
way to get started is to write tests using the ScalaTest “FunSuite.” To get started, create
a directory named simpletest under the src/test/scala directory, like this:

$ mkdir src/test/scala/simpletest

Next, create a file named HelloTests.scala in that directory with the following contents:

package simpletest

import org.scalatest.FunSuite

class HelloTests extends FunSuite {

// test 1
test("the name is set correctly in constructor") {

val p = new Person("Barney Rubble")
assert(p.name == "Barney Rubble")

}

// test 2
test("a Person's name can be changed") {

val p = new Person("Chad Johnson")
p.name = "Ochocinco"
assert(p.name == "Ochocinco")

}

}

This file demonstrates the ScalaTest FunSuite approach. A few important points:

160 CHAPTER 42. USING SCALATEST WITH SBT

• Your class should extend FunSuite
• You create tests as shown, by giving each test a unique name
• At the end of each test you should call assert to test that a condition has been

satisfied

Using ScalaTest like this is similar to JUnit, so if you’re coming to Scala from Java,
hopefully this looks very familiar.

Now you can run these tests with the sbt test command. Skipping the first few lines
of output, the result looks like this:

> sbt test
[info] Set current project to HelloScalaTest (in build file:/Users/al/Projects/Scala/HelloScalaTest/)
[info] HelloTests:
[info] - the name is set correctly in constructor
[info] - a Person's name can be changed
[info] Run completed in 277 milliseconds.
[info] Total number of tests run: 2
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 2, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[success] Total time: 1 s

42.5 TDD tests

This example demonstrates a Test-Driven Development (TDD) style of testing with Sca-
laTest. In the next lesson you’ll see how to write Behavior-Driven Development (BDD)
tests with ScalaTest and SBT.

Keep the project you just created. You’ll use it again in the next lesson.

43
Writing BDD Style Tests with ScalaTest

and SBT

In the previous lesson you saw how to write Test-Driven Development (TDD) tests
with ScalaTest. ScalaTest also supports a Behavior-Driven Development (BDD) style
of testing, which we’ll demonstrate next.

This lesson uses the same SBT project as the previous lesson, so you don’t
have to go through the initial setup work again.

43.1 Creating a Scala class to test

First, create a new Scala class to test. In the src/main/scala/simpletest, create a new file
named MathUtils.scala with these contents:

package simpletest

object MathUtils {

def double(i: Int) = i * 2

}

The BDD tests you’ll write next will test the double method in that class.

43.2 Creating ScalaTest BDD-style tests

Next, create a file named MathUtilsTests.scala in the src/test/scala/simpletest directory,
and put these contents in that file:

package simpletest

161

http://www.scalatest.org
https://dannorth.net/introducing-bdd/

162 CHAPTER 43. WRITING BDD STYLE TESTS WITH SCALATEST AND SBT

import org.scalatest.FunSpec

class MathUtilsSpec extends FunSpec {

describe("MathUtils::double") {

it("should handle 0 as input") {
val result = MathUtils.double(0)
assert(result == 0)

}

it("should handle 1") {
val result = MathUtils.double(1)
assert(result == 2)

}

it("should handle really large integers") (pending)

}

}

As you can see, this is a very different-looking style than the TDD tests in the previous
lesson. If you’ve never used a BDD style of testing before, a main idea is that the tests
should be relatively easy to read for one of the “domain experts” who work with the
programmers to create the application. A few notes about this code:

• It uses the FunSpec class where the TDD tests used FunSuite
• A set of tests begins with describe
• Each test begins with it. The idea is that the test should read like, “It should do

XYZ…,” where “it” is the double function
• This example also shows how to mark a test as “pending”

43.3 Running the tests

With those files in place you can again run sbt test. The important part of the output
looks like this:

43.4. WHERE TO GO FROM HERE 163

> sbt test

[info] HelloTests:
[info] - the name is set correctly in constructor
[info] - a Person's name can be changed
[info] MathUtilsSpec:
[info] MathUtils::double
[info] - should handle 0 as input
[info] - should handle 1
[info] - should handle really large integers (pending)
[info] Total number of tests run: 4
[info] Suites: completed 2, aborted 0
[info] Tests: succeeded 4, failed 0, canceled 0, ignored 0, pending 1
[info] All tests passed.
[success] Total time: 4 s, completed Jan 6, 2018 4:58:23 PM

A few notes about that output:

• sbt test ran the previous HelloTests as well as the new MathUtilsSpec tests
• The pending test shows up in the output and is marked “(pending)”
• All of the tests passed

If you want to have a little fun with this, change one or more of the tests so they inten-
tionally fail, and then see what the output looks like.

43.4 Where to go from here

For more information about SBT and ScalaTest, see the following resources:

• The main SBT documentation
• The ScalaTest documentation

http://www.scala-sbt.org/documentation.html
http://www.scalatest.org/user_guide

164 CHAPTER 43. WRITING BDD STYLE TESTS WITH SCALATEST AND SBT

44
Functional Programming

Scala lets you write code in an object-oriented programming (OOP) style, a functional
programming (FP) style, and even in a hybrid style, using both approaches in combina-
tion. This book assumes that you’re coming to Scala from an OOP language like Java,
C++, or C#, so outside of covering Scala classes, there aren’t any special sections about
OOP in this book. But because the FP style is still relatively new to many developers,
we’ll provide a brief introduction to Scala’s support for FP in the next several lessons.

Functional programming is a style of programming that emphasizes writing applica-
tions using only pure functions and immutable values. As Alvin Alexander wrote in
Functional Programming, Simplified, rather than using that description, it can be help-
ful to say that functional programmers have an extremely strong desire to see their code
as math — to see the combination of their functions as a series of algebraic equations.
In that regard, you could say that functional programmers like to think of themselves
as mathematicians. That’s the driving desire that leads them to use only pure functions
and immutable values, because that’s what you use in algebra and other forms of math.

Functional programming is a large topic, and there’s no simple way to condense the
entire topic into this little book, but in the following lessons we’ll give you a taste of FP,
and show some of the tools Scala provides for developers to write functional code.

165

https://alvinalexander.com/scala/functional-programming-simplified-book

166 CHAPTER 44. FUNCTIONAL PROGRAMMING

45
Pure Functions

A first feature Scala offers to help you write functional code is the ability to write pure
functions. In Functional Programming, Simplified, Alvin Alexander defines a pure
function like this:

• The function’s output depends only on its input variables
• It doesn’t mutate any hidden state
• It doesn’t have any “back doors”: It doesn’t read data from the outside world

(including the console, web services, databases, files, etc.), or write data to the
outside world

As a result of this definition, any time you call a pure function with the same input
value(s), you’ll always get the same result. For example, you can call a double function
an infinite number of times with the input value 2, and you’ll always get the result 4.

45.1 Examples of pure functions

Given that definition of pure functions, as you might imagine, methods like these in
the *scala.math._* package are pure functions:

• abs
• ceil
• max
• min

These Scala String methods are also pure functions:

• isEmpty
• length
• substring

167

https://alvinalexander.com/scala/functional-programming-simplified-book

168 CHAPTER 45. PURE FUNCTIONS

Many methods on the Scala collections classes also work as pure functions, including
drop, filter, and map.

45.2 Examples of impure functions

Conversely, the following functions are impure because they violate the definition.

The foreach method on collections classes is impure because it’s only used for its side
effects, such as printing to STDOUT.

A great hint that foreach is impure is that it’s method signature declares
that it returns the type Unit. Because it returns nothing, logically the only
reason you ever call it is to achieve some side effect. Similarly, anymethod
that returns Unit is going to be an impure function.

Date and time related methods like getDayOfWeek, getHour, and getMinute are all
impure because their output depends on something other than their input parameters.
Their results rely on some form of hidden I/O, hidden input in these examples.

In general, impure functions do one or more of these things:

• Read hidden inputs, i.e., they access variables and data not explicitly passed into
the function as input parameters

• Write hidden outputs
• Mutate the parameters they are given
• Perform some sort of I/O with the outside world

45.3 But impure functions are needed …

Of course an application isn’t very useful if it can’t read or write to the outside world,
so people make this recommendation:

Write the core of your application using pure functions, and then write an
impure “wrapper” around that core to interact with the outside world. If
you like food analogies, this is like putting a layer of impure icing on top
of a pure cake.

45.4. WRITING PURE FUNCTIONS 169

There are ways to make impure interactions with the outside world feel a little more
pure. For instance, you’ll hear about things like the IO Monad for dealing with user
input, files, networks, and databases. But in the end, FP applications have a core of
pure functions combined with other functions to interact with the outside world.

45.4 Writing pure functions

Writing pure functions in Scala is one of the simpler parts about functional program-
ming: You just write pure functions using Scala’smethod syntax. Here’s a pure function
that doubles the input value it’s given:

def double(i: Int): Int = i * 2

Although recursion isn’t covered in this book, if you like a good “challenge” example,
here’s a pure function that calculates the sum of a list of integers (List[Int]):

def sum(list: List[Int]): Int = list match {
case Nil => 0
case head :: tail => head + sum(tail)

}

Even though we haven’t covered recursion, if you can understand that code, you’ll see
that it meets my definition of a pure function.

45.5 Key points

The first key point of this lesson is the definition of a pure function:

A pure function is a function that depends only on its declared inputs and
its internal algorithm to produce its output. It does not read any other val-
ues from “the outside world” — the world outside of the function’s scope
— and it does not modify any values in the outside world.

A second key point is that real-world applications consist of a combination of pure
and impure functions. A common recommendation is to write the core of your appli-
cation using pure functions, and then to use impure functions to communicate with
the outside world.

170 CHAPTER 45. PURE FUNCTIONS

46
Passing Functions Around

While every programming language ever created probably lets you write pure func-
tions, a second great FP feature of Scala is that you can create functions as variables,
just like you create String and Int variables. This feature has many benefits, the most
common of which is that it lets you pass functions as parameters into other functions.
You saw that earlier in this bookwhen the map and filtermethodswere demonstrated:

val nums = (1 to 10).toList

val doubles = nums.map(_ * 2)
val lessThanFive = nums.filter(_ < 5)

In those examples, anonymous functions are passed into map and filter. In the lesson
on anonymous functions we demonstrated that this example:

val doubles = nums.map(_ * 2)

is the same as passing a regular function into map:

def double(i: Int): Int = i * 2 //a method that doubles an Int
val doubles = nums.map(double)

As those examples show, Scala clearly lets you pass anonymous functions and regu-
lar functions into other methods. This is a powerful feature that good FP languages
provide.

If you like technical terms, a function that takes another function as an
input parameter is known as aHigher-Order Function (HOF). (And if you
like humor, as someone once wrote, that’s like saying that a class that takes
an instance of another class as a constructor parameter is a Higher-Order
Class.)

171

172 CHAPTER 46. PASSING FUNCTIONS AROUND

46.1 Function or method?

Scala has a special “function” syntax, but as a practical matter the def syntax seems to
be preferred. This may be because of two reasons:

• The def syntax is more familiar to people coming from a C/Java/C# background
• You can use def methods just like they are val functions

What that second statement means is that when you define amethod with def like this:

def double(i: Int): Int = i * 2

you can then pass double around as if it were a variable, like this:

val x = ints.map(double)

Even though double is defined as a method, Scala lets you treat it as a function.

The ability to pass functions around as variables is a distinguishing feature of functional
programming languages. And as you’ve seen in map and filter examples in this book,
the ability to pass functions as parameters into other functions helps you create code
that is concise and still readable.

46.2 A few examples

If you’re not comfortable with the process of passing functions as parameters into other
functions, here are a few more examples you can experiment with in the REPL:

List("foo", "bar").map(_.toUpperCase)
List("foo", "bar").map(_.capitalize)
List("adam", "scott").map(_.length)
List(1,2,3,4,5).map(_ * 10)
List(1,2,3,4,5).filter(_ > 2)
List(5,1,3,11,7).takeWhile(_ < 6)

Remember that any of those anonymous functions can also be written as “regular”
functions, so you can write a function like this:

https://alvinalexander.com/scala/fp-book-diffs-val-def-scala-functions

46.2. A FEW EXAMPLES 173

def toUpper(s: String): String = s.toUpperCase

and then pass it into map like this:

List("foo", "bar").map(toUpper)

or this:

List("foo", "bar").map(s => toUpper(s))

Those examples that use a “regular” function are equivalent to these anonymous func-
tion examples:

List("foo", "bar").map(s => s.toUpperCase)
List("foo", "bar").map(_.toUpperCase)

174 CHAPTER 46. PASSING FUNCTIONS AROUND

47
No Null Values

Functional programming is like writing a series of algebraic equations, and because
you don’t use null values in algebra, you don’t use null values in FP. That brings up an
interesting question: In the situations where you might normally use a null value in
Java/OOP code, what do you do?

Scala’s solution is to use constructs like the Option/Some/None classes. We’ll provide
an introduction to the techniques in this lesson.

47.1 A first example

While this first Option/Some/None example doesn’t deal with null values, it’s a good
way to demonstrate the Option/Some/None classes, so we’ll start with it.

Imagine that you want to write a method to make it easy to convert strings to integer
values, and you want an elegant way to handle the exceptions that can be thrown when
your method gets a string like "foo" instead of something that converts to a number,
like "1". A first guess at such a function might look like this:

def toInt(s: String): Int = {
try {

Integer.parseInt(s.trim)
} catch {

case e: Exception => 0
}

}

The idea of this function is that if a string converts to an integer, you return the con-
verted Int, but if the conversion fails you return 0. This might be okay for some pur-
poses, but it’s not really accurate. For instance, the method might have received "0",
but it may have also received "foo" or "bar" or an infinite number of other strings.
This creates a real problem: How do you know when the method really received a "0",

175

176 CHAPTER 47. NO NULL VALUES

or when it received something else? The answer is that with this approach, there’s no
way to know.

47.2 Using Option/Some/None

Scala’s solution to this problem is to use a trio of classes known as Option, Some, and
None. The Some and None classes are subclasses of Option, so the solution works like
this:

• You declare that toInt returns an Option type

• If toInt receives a string it can convert to an Int, you wrap the Int inside of a
Some

• If toInt receives a string it can’t convert, it returns a None

The implementation of the solution looks like this:

def toInt(s: String): Option[Int] = {
try {

Some(Integer.parseInt(s.trim))
} catch {

case e: Exception => None
}

}

This code can be read as, “When the given string converts to an integer, return the in-
teger wrapped in a Somewrapper, such as Some(1). When the string can’t be converted
to an integer, return a None value.”

Here are two REPL examples that demonstrate toInt in action:

scala> val a = toInt("1")
a: Option[Int] = Some(1)

scala> val a = toInt("foo")
a: Option[Int] = None

As shown, the string "1" converts to Some(1), and the string "foo" converts to None.
This is the essence of the Option/Some/None approach. It’s used to handle exceptions

47.3. BEING A CONSUMER OF TOINT 177

(as in this example), and the same technique works for handling null values.

You’ll find this approach used throughout Scala library classes, and in
third-party Scala libraries.

47.3 Being a consumer of toInt

Now imagine that you’re a consumer of the toIntmethod. You know that the method
returns a subclass of Option[Int], so the question becomes, how do you work with
these return types?

There are two main answers, depending on your needs:

• Use a match expression
• Use a for-expression

There are other approaches, but these are the two main approaches, espe-
cially from an FP standpoint.

47.3.1 Using a match expression

One possibility is to use a match expression, which looks like this:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

In this example, if x can be converted to an Int, the first case statement is executed; if
x can’t be converted to an Int, the second case statement is executed.

47.3.2 Using for/yield

Another common solution is to use a for-expression — i.e., the for/yield combination
that was shown earlier in this book. To demonstrate this, imagine that you want to con-
vert three strings to integer values, and then add them together. The for/yield solution
looks like this:

178 CHAPTER 47. NO NULL VALUES

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

When that expression finishes running, y will be one of two things:

• If all three strings convert to integers, y will be a Some[Int], i.e., an integer
wrapped inside a Some

• If any of the three strings can’t be converted to an inside, y will be a None

You can test this for yourself in the Scala REPL. First, paste these three string variables
into the REPL:

val stringA = "1"
val stringB = "2"
val stringC = "3"

Next, paste the for-expression into the REPL. When you do that, you’ll see this result:

scala> val y = for {
| a <- toInt(stringA)
| b <- toInt(stringB)
| c <- toInt(stringC)
| } yield a + b + c

y: Option[Int] = Some(6)

As shown, y is bound to the value Some(6).

To see the failure case, change any of those strings to something that won’t convert to
an integer. When you do that, you’ll see that y is a None:

y: Option[Int] = None

47.4 Options can be thought of as a container of 0 or 1 items

One goodway to think about the Option classes is that they represent a container, more
specifically a container that has either zero or one item inside:

47.5. USING FOREACH 179

• Some is a container with one item in it
• None is a container, but it has nothing in it

If you prefer to think of the Option classes as being like a box, None is a
little like getting an empty box for a birthday gift.

47.5 Using foreach

Because Some and None can be thought of containers, they can be further thought of
as being like collections classes. As a result, they have all of the methods you’d expect
from a collection class, including map, filter, foreach, etc.

This raises an interesting question: What will these two values print, if anything?

toInt("1").foreach(println)
toInt("x").foreach(println)

The answer is that the first example prints the number 1, and the second example
doesn’t print anything. The first example prints 1 because:

• toInt(“1”) evaluates to Some(1)
• The expression evaluates to Some(1).foreach(println)
• The foreachmethod on the Some class knows how to reach inside the Some con-

tainer and extract the value (1) that’s inside it, so it passes that value to println

Similarly, the second example prints nothing because:

• toInt("x") evaluates to None
• The foreachmethod on the None class knows that None doesn’t contain anything,

so it does nothing

Again, None is just an empty container.

Somewhere in Scala’s history, someone noted that the first example (the Some) repre-
sents the “Happy Path” of Option/Some/None approach, and the second example (the
None) represents the “Unhappy Path.” But, despite having two different possible out-
comes, the cool thing about the approach is that the code youwrite to handle an Option
looks exactly the same in both cases. The foreach examples look like this:

180 CHAPTER 47. NO NULL VALUES

toInt("1").foreach(println)
toInt("x").foreach(println)

And the for-expression looks like this:

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

You only have to write one piece of code to handle both the Happy and Unhappy Paths,
and that simplifies your code. The only time you have to think about whether you got
a Some or a None is when you finally handle the result value in a match expression, like
this:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

47.6 Using Option to replace null values

Another place where a null value can silently creep into your code is with a class like
this:

class Address (
var street1: String,
var street2: String,
var city: String,
var state: String,
var zip: String

)

While every address on Earth has a street1 value, the street2 value is optional. As a
result, that class is subject to this type of abuse:

val santa = new Address(
"1 Main Street",

47.6. USING OPTION TO REPLACE NULL VALUES 181

null, // <-- D'oh! A null value!
"North Pole",
"Alaska",
"99705"

)

To handle situations like this, developers tend to use null values or empty strings, both
of which are hacks to work around the main problem: street2 is an optional field. In
Scala — and other modern languages — the correct solution is to declare up front that
street2 is optional:

class Address (
var street1: String,
var street2: Option[String],
var city: String,
var state: String,
var zip: String

)

With that definition, developers can write more accurate code like this:

val santa = new Address(
"1 Main Street",
None,
"North Pole",
"Alaska",
"99705"

)

or this:

val santa = new Address(
"123 Main Street",
Some("Apt. 2B"),
"Talkeetna",
"Alaska",
"99676"

)

Once you have an optional field like this, you work with it as shown in the previous

182 CHAPTER 47. NO NULL VALUES

examples: With match expressions, for expressions, and other built-in methods like
foreach.

47.7 Option isn’t the only solution

This lesson focused on the Option/Some/None solution, but Scala has a few other al-
ternatives. For example, a trio of classes known as Try/Success/Failure work in the
same manner, but a) you primarily use these classes when code can throw exceptions,
and b) the Failure class gives you access to the exception message. For example,
Try/Success/Failure is commonly used when writing methods that interact with files,
databases, and internet services, as those functions can easily throw exceptions. These
classes are demonstrated in the Functional Error Handling lesson that follows.

47.8 Key points

This lesson was a little longer than the others, so here’s a quick review of the key points:

• Functional programmers don’t use null values
• A main replacement for null values is to use the Option/Some/None classes
• Common ways to work with Option values are match and for expressions
• Options can be thought of as containers of one item (Some) and no items (None)
• You can also use Options when defining constructor parameters

47.9 See also

• Tony Hoare invented the null reference in 1965, and refers to it as his “billion
dollar mistake.”

https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions
https://en.wikipedia.org/wiki/Tony_Hoare#Apologies_and_retractions

48
Companion Objects

A companion object in Scala is an object that’s declared in the same file as a class,
and has the same name as the class. For instance, when the following code is saved in a
file named Pizza.scala, the Pizza object is considered to be a companion object to the
Pizza class:

class Pizza {
}

object Pizza {
}

This has several benefits. First, a companion object and its class can access each other’s
private members (fields and methods). This means that the printFilename method
in this class will work because it can access the HiddenFilename field in its companion
object:

class SomeClass {
def printFilename() = {

println(SomeClass.HiddenFilename)
}

}

object SomeClass {
private val HiddenFilename = "/tmp/foo.bar"

}

A companion object offers much more functionality than this, and we’ll demonstrate
a few of its most important features in the rest of this lesson.

183

184 CHAPTER 48. COMPANION OBJECTS

48.1 Creating new instances without the new keyword

You probably noticed in some examples in this book that you can create new instances
of certain classes without having to use the new keyword before the class name, as in
this example:

val zenMasters = List(
Person("Nansen"),
Person("Joshu")

)

This functionality comes from the use of companion objects. What happens is that
when you define an apply method in a companion object, it has a special meaning to
the Scala compiler. There’s a little syntactic sugar baked into Scala that lets you type
this code:

val p = Person("Fred Flinstone")

and during the compilation process the compiler turns that code into this code:

val p = Person.apply("Fred Flinstone")

The apply method in the companion object acts as a Factory Method, and Scala’s syn-
tactic sugar lets you use the syntax shown, creating new class instances without using
the new keyword.

48.1.1 Enabling that functionality

To demonstrate how this feature works, here’s a class named Person along with an
apply method in its companion object:

class Person {
var name = ""

}

object Person {
def apply(name: String): Person = {

var p = new Person
p.name = name

https://en.wikipedia.org/wiki/Factory_method_pattern

48.1. CREATING NEW INSTANCES WITHOUT THE NEW KEYWORD 185

p
}

}

To test this code, paste both the class and the object in the Scala REPL at the same time
using this technique:

• Start the Scala REPL from your command line (with the scala command)
• Type :paste and press the [Enter] key
• The REPL should respond with this text:

// Entering paste mode (ctrl-D to finish)

• Now paste both the class and object into the REPL at the same time
• Press Ctrl-D to finish the “paste” process

When that process works you should see this output in the REPL:

defined class Person
defined object Person

The REPL requires that a class and its companion object be entered at the
same time with this technique.

Now you can create a new instance of the Person class like this:

val p = Person.apply("Fred Flinstone")

That code directly calls apply in the companion object. More importantly, you can
also create a new instance like this:

val p = Person("Fred Flinstone")

and this:

val zenMasters = List(
Person("Nansen"),
Person("Joshu")

)

186 CHAPTER 48. COMPANION OBJECTS

To be clear, what happens in this process is:

• You type something like val p = Person("Fred")
• The Scala compiler sees that there is no new keyword before Person
• The compiler looks for an applymethod in the companion object of the Person

class that matches the type signature you entered
• If it finds an apply method, it uses it; if it doesn’t, you get a compiler error

48.1.2 Creating multiple constructors

You can create multiple apply methods in a companion object to provide multiple
constructors. The following code shows how to create both one- and two-argument
constructors. Because we introduced Option values in the previous lesson, this exam-
ple also shows how to use Option in a situation like this:

class Person {
var name: Option[String] = None
var age: Option[Int] = None
override def toString = s"$name, $age"

}

object Person {

// a one-arg constructor
def apply(name: Option[String]): Person = {

var p = new Person
p.name = name
p

}

// a two-arg constructor
def apply(name: Option[String], age: Option[Int]): Person = {

var p = new Person
p.name = name
p.age = age
p

}

48.2. ADDING AN UNAPPLYMETHOD 187

}

If you paste that code into the REPL as before, you’ll see that you can create new Person
instances like this:

val p1 = Person(Some("Fred"))
val p2 = Person(None)

val p3 = Person(Some("Wilma"), Some(33))
val p4 = Person(Some("Wilma"), None)

When you print those values you’ll see these results:

val p1: Person = Some(Fred), None
val p2: Person = None, None
val p3: Person = Some(Wilma), Some(33)
val p4: Person = Some(Wilma), None

When running tests like this, it’s best to clear the REPL’s memory. To do
this, use the :reset command inside the REPL before using the :paste
command.

48.2 Adding an unapply method

Just as adding an apply method in a companion object lets you construct new object
instances, adding an unapply lets you de-construct object instances. We’ll demonstrate
this with an example.

Here’s a different version of a Person class and a companion object:

class Person(var name: String, var age: Int)

object Person {
def unapply(p: Person): String = s"${p.name}, ${p.age}"

}

Notice that the companion object defines an unapply method. That method takes an
input parameter of the type Person, and returns a String. To test the unapplymethod
manually, first create a new Person instance:

188 CHAPTER 48. COMPANION OBJECTS

val p = new Person("Lori", 29)

Then test unapply like this:

val result = Person.unapply(p)

This is what the unapply result looks like in the REPL:

scala> val result = Person.unapply(p)
result: String = Lori, 29

As shown, unapply de-constructs the Person instance it’s given. In Scala, when you
put an unapplymethod in a companion object, it’s said that you’ve created an extractor
method, because you’ve created a way to extract the fields out of the object.

48.2.1 unapply can return different types

In that example unapply returns a String, but you can write it to return anything.
Here’s an example that returns the two fields in a tuple:

class Person(var name: String, var age: Int)

object Person {
def unapply(p: Person): Tuple2[String, Int] = (p.name, p.age)

}

Here’s what that method looks like in the REPL:

scala> val result = Person.unapply(p)
result: (String, Int) = (Lori,29)

Because this unapply method returns the class fields as a tuple, you can also do this:

scala> val (name, age) = Person.unapply(p)
name: String = Lori
age: Int = 29

48.3. KEY POINTS 189

48.2.2 unapply extractors in the real world

A benefit of using unapply to create an extractor is that if you follow the proper Scala
conventions, they enable a convenient form of pattern-matching in match expressions.

We’ll discuss that more in the next lesson, but as you’ll see, the story gets even better:
You rarely need towrite an unapplymethod yourself. Instead, what happens is that you
get apply and unapply methods for free when you create your classes as case classes
rather than as the “regular” Scala classes you’ve seen so far. We’ll dive into case classes
in the next lesson.

48.3 Key points

The key points of this lesson are:

• A companion object is an object that’s declared in the same file as a class, and
has the same name as the class

• A companion object and its class can access each other’s private members
• A companion object’s applymethod lets you create new instances of a class with-

out using the new keyword
• A companion object’s unapply method lets you de-construct an instance of a

class into its individual components

190 CHAPTER 48. COMPANION OBJECTS

49
Case Classes

Another Scala feature that provides support for functional programming is the case
class. A case class has all of the functionality of a regular class, and more. When the
compiler sees the case keyword in front of a class, it generates code for you, with the
following benefits:

• Case class constructor parameters are public val fields by default, so accessor
methods are generated for each parameter.

• An apply method is created in the companion object of the class, so you don’t
need to use the new keyword to create a new instance of the class.

• An unapply method is generated, which lets you use case classes in more ways
in match expressions.

• A copy method is generated in the class. You may not use this feature in
Scala/OOP code, but it’s used all the time in Scala/FP.

• equals and hashCode methods are generated, which let you compare objects
and easily use them as keys in maps.

• A default toString method is generated, which is helpful for debugging.

These features are all demonstrated in the following sections.

49.1 With apply you don’t need new

When you define a class as a case class, you don’t have to use the new keyword to create
a new instance:

scala> case class Person(name: String, relation: String)
defined class Person

// "new" not needed before Person
scala> val christina = Person("Christina", "niece")
christina: Person = Person(Christina,niece)

191

192 CHAPTER 49. CASE CLASSES

As discussed in the previous lesson, this works because a method named apply is gen-
erated inside Person’s companion object.

49.2 No mutator methods

Case class constructor parameters are val fields by default, so an accessor method is
generated for each parameter:

scala> christina.name
res0: String = Christina

But, mutator methods are not generated:

// can't mutate the `name` field
scala> christina.name = "Fred"
<console>:10: error: reassignment to val

christina.name = "Fred"
^

Because in FP you never mutate data structures, it makes sense that constructor fields
default to val.

49.3 An unapply method

In the previous lesson on companion objects you saw how to write unapply methods.
A great thing about a case class is that it automatically generates an unapply method
for your class, so you don’t have to write one.

To demonstrate this, imagine that you have this trait:

trait Person {
def name: String

}

Then, create these case classes to extend that trait:

case class Student(name: String, year: Int) extends Person
case class Teacher(name: String, specialty: String) extends Person

49.3. AN UNAPPLYMETHOD 193

Because those are defined as case classes — and they have built-in unapply methods
— you can write a match expression like this:

def getPrintableString(p: Person): String = p match {
case Student(name, year) =>

s"$name is a student in Year $year."
case Teacher(name, whatTheyTeach) =>

s"$name teaches $whatTheyTeach."
}

Notice these two patterns in the case statements:

case Student(name, year) =>
case Teacher(name, whatTheyTeach) =>

Those patterns work because Student and Teacher are defined as case classes that have
unapply methods whose type signature conforms to a certain standard. Technically,
the specific type of patternmatching shown in these examples is known as a constructor
pattern.

The Scala standard is that an unapply method returns the case class con-
structor fields in a tuple that’s wrapped in an Option. The “tuple” part of
the solution was shown in the previous lesson.

To show how that code works, create an instance of Student and Teacher:

val s = Student("Al", 1)
val t = Teacher("Bob Donnan", "Mathematics")

Next, this is what the output looks like in theREPLwhen you call getPrintableString
with those two instances:

scala> getPrintableString(s)
res0: String = Al is a student in Year 1.

scala> getPrintableString(t)
res1: String = Bob Donnan teaches Mathematics.

All of this content on unapplymethods and extractors is a little advanced

194 CHAPTER 49. CASE CLASSES

for an introductory book like this, but because case classes are an impor-
tant FP topic, it seems better to cover them, rather than skipping over
them.

49.4 copy method

A case class also has an automatically-generated copymethod that’s extremely helpful
when you need to perform the process of a) cloning an object and b) updating one or
more of the fields during the cloning process. As an example, this is what the process
looks like in the REPL:

scala> case class BaseballTeam(name: String, lastWorldSeriesWin: Int)
defined class BaseballTeam

scala> val cubs1908 = BaseballTeam("Chicago Cubs", 1908)
cubs1908: BaseballTeam = BaseballTeam(Chicago Cubs,1908)

scala> val cubs2016 = cubs1908.copy(lastWorldSeriesWin = 2016)
cubs2016: BaseballTeam = BaseballTeam(Chicago Cubs,2016)

As shown, when you use the copy method, all you have to do is supply the names of
the fields you want to modify during the cloning process.

Because you never mutate data structures in FP, this is how you create a new instance
of a class from an existing instance. This process can be referred to as, “update as you
copy.”

49.5 equals and hashCode methods

Case classes also have automatically-generated equals and hashCode methods, so in-
stances can be compared:

scala> case class Person(name: String, relation: String)
defined class Person

scala> val christina = Person("Christina", "niece")
christina: Person = Person(Christina,niece)

scala> val hannah = Person("Hannah", "niece")

49.6. TOSTRINGMETHODS 195

hannah: Person = Person(Hannah,niece)

scala> christina == hannah
res1: Boolean = false

These methods also let you easily use your objects in collections like sets and maps.

49.6 toString methods

Finally, case classes also have a good default toStringmethod implementation, which
at the very least is helpful when debugging code:

scala> christina
res0: Person = Person(Christina,niece)

49.7 The biggest advantage

While all of these features are great benefits to functional programming, as they write
in the book, Programming in Scala (Odersky, Spoon, andVenners), “the biggest advan-
tage of case classes is that they support pattern matching.” Pattern matching is a major
feature of FP languages, and Scala’s case classes provide a simple way to implement
pattern matching in match expressions and other areas.

https://www.amazon.com/Programming-Scala-Updated-2-12/dp/0981531687/

196 CHAPTER 49. CASE CLASSES

50
Case Objects

Before we jump into case objects, we should provide a little background on “regular”
Scala objects. As we mentioned early in this book, you use a Scala object when you
want to create a singleton object. As the documentation states, “Methods and values
that aren’t associated with individual instances of a class belong in singleton objects,
denoted by using the keyword object instead of class.”

A common example of this is when you create a “utilities” object, such as this one:

object PizzaUtils {
def addTopping(p: Pizza, t: Topping): Pizza = ...
def removeTopping(p: Pizza, t: Topping): Pizza = ...
def removeAllToppings(p: Pizza): Pizza = ...

}

Or this one:

object FileUtils {
def readTextFileAsString(filename: String): Try[String] = ...
def copyFile(srcFile: File, destFile: File): Try[Boolean] = ...
def readFileToByteArray(file: File): Try[Array[Byte]] = ...
def readFileToString(file: File): Try[String] = ...
def readFileToString(file: File, encoding: String): Try[String] = ...
def readLines(file: File, encoding: String): Try[List[String]] = ...

}

This is a common way of using the Scala object construct.

50.1 Case objects

A case object is like an object, but just like a case class has more features than a
regular class, a case object has more features than a regular object. Its features include:

197

%7B%7Bsite.baseurl%7D%7D/tour/singleton-objects.html

198 CHAPTER 50. CASE OBJECTS

• It’s serializable
• It has a default hashCode implementation
• It has an improved toString implementation

Because of these features, case objects are primarily used in two places (instead of reg-
ular objects):

• When creating enumerations
• When creating containers for “messages” that you want to pass between other

objects (such as with the Akka actors library)

50.2 Creating enumerations with case objects

As we showed earlier in this book, you create enumerations in Scala like this:

sealed trait Topping
case object Cheese extends Topping
case object Pepperoni extends Topping
case object Sausage extends Topping
case object Mushrooms extends Topping
case object Onions extends Topping

sealed trait CrustSize
case object SmallCrustSize extends CrustSize
case object MediumCrustSize extends CrustSize
case object LargeCrustSize extends CrustSize

sealed trait CrustType
case object RegularCrustType extends CrustType
case object ThinCrustType extends CrustType
case object ThickCrustType extends CrustType

Then later in your code you use those enumerations like this:

case class Pizza (
crustSize: CrustSize,
crustType: CrustType,
toppings: Seq[Topping]

https://akka.io

50.3. USING CASE OBJECTS AS MESSAGES 199

)

50.3 Using case objects as messages

Another place where case objects come in handy is when you want to model the con-
cept of a “message.” For example, imagine that you’re writing an application like Ama-
zon’s Alexa, and you want to be able to pass around “speak” messages like, “speak the
enclosed text,” “stop speaking,”, “pause,” and “resume.” In Scala you create singleton
objects for those messages like this:

case class StartSpeakingMessage(textToSpeak: String)
case object StopSpeakingMessage
case object PauseSpeakingMessage
case object ResumeSpeakingMessage

Notice that StartSpeakingMessage is defined as a case class rather than a case object.
This is because a case object can’t have any constructor parameters.

Given those messages, if Alexa was written using the Akka library, you’d find code like
this in a “speak” class:

class Speak extends Actor {
def receive = {

case StartSpeakingMessage(textToSpeak) =>
// code to speak the text

case StopSpeakingMessage =>
// code to stop speaking

case PauseSpeakingMessage =>
// code to pause speaking

case ResumeSpeakingMessage =>
// code to resume speaking

}
}

This is a good, safe way to pass messages around in Scala applications.

200 CHAPTER 50. CASE OBJECTS

51
Functional Error Handling in Scala

Because functional programming is like algebra, there are no null values or exceptions.
But of course you can still have exceptions when you try to access servers that are down
or files that are missing, so what can you do? This lesson demonstrates the techniques
of functional error handling in Scala.

51.1 Option/Some/None

We already demonstrated one of the techniques to handle errors in Scala: The trio of
classes named Option, Some, and None. Instead of writing amethod like toInt to throw
an exception or return a null value, you declare that the method returns an Option, in
this case an Option[Int]:

def toInt(s: String): Option[Int] = {
try {

Some(Integer.parseInt(s.trim))
} catch {

case e: Exception => None
}

}

Later in your code you handle the result from toInt using match and for expressions:

toInt(x) match {
case Some(i) => println(i)
case None => println("That didn't work.")

}

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

201

202 CHAPTER 51. FUNCTIONAL ERROR HANDLING IN SCALA

} yield a + b + c

These approaches were discussed in the “No Null Values” lesson, so we won’t repeat
that discussion here.

51.2 Try/Success/Failure

Another trio of classes named Try, Success, and Failure work just like Option, Some,
and None, but with two nice features:

• Try makes it very simple to catch exceptions

• Failure contains the exception message

Here’s the toInt method re-written to use these classes. First, import the classes into
the current scope:

import scala.util.{Try,Success,Failure}

After that, this is what toInt looks like with Try:

def toInt(s: String): Try[Int] = Try {
Integer.parseInt(s.trim)

}

As you can see, that’s quite a bit shorter than the Option/Some/None approach, and it
can further be shortened to this:

def toInt(s: String): Try[Int] = Try(Integer.parseInt(s.trim))

Both of those approaches are much shorter than the Option/Some/None approach.

The REPL demonstrates how this works. First, the success case:

scala> val a = toInt("1")
a: scala.util.Try[Int] = Success(1)

Second, this is what it looks like when Integer.parseInt throws an exception:

scala> val b = toInt("boo")

51.3. EVEN MORE … 203

b: scala.util.Try[Int] = Failure(java.lang.NumberFormatException: For input string: "boo")

As that output shows, the Failure that’s returned by toInt contains the reason for the
failure, i.e., the exception message.

There are quite a few ways to work with the results of a Try — including the ability to
“recover” from the failure— but common approaches still involve using match and for
expressions:

toInt(x) match {
case Success(i) => println(i)
case Failure(s) => println(s"Failed. Reason: $s")

}

val y = for {
a <- toInt(stringA)
b <- toInt(stringB)
c <- toInt(stringC)

} yield a + b + c

Note that when using a for-expression and everything works, it returns the value
wrapped in a Success:

scala.util.Try[Int] = Success(6)

Conversely, if it fails, it returns a Failure:

scala.util.Try[Int] = Failure(java.lang.NumberFormatException: For input string: "a")

51.3 Even more …

There are other classes that work in a similar manner, including Either/Left/Right
in the Scala library, and other third-party libraries, but Option/Some/None and
Try/Success/Failure are commonly used, and good to learn first.

You can use whatever you like, but Try/Success/Failure is generally used when dealing
with code that can throw exceptions — because you almost always want to understand
the exception— andOption/Some/None is used in other places, such as to avoid using
null values.

204 CHAPTER 51. FUNCTIONAL ERROR HANDLING IN SCALA

52
Concurrency

In the next lesson you’ll see a primary tool for writing parallel and concurrent applica-
tions, the Scala Future.

205

206 CHAPTER 52. CONCURRENCY

53
Scala Futures

When you want to write parallel and concurrent applications in Scala, you could still
use the native Java Thread— but the Scala Future makes parallel/concurrent program-
ming much simpler, and it’s preferred.

Here’s a description of Future from its Scaladoc:

“A Future represents a value which may or may not currently be available,
but will be available at some point, or an exception if that value could not
be made available.”

53.0.1 Thinking in futures

To help demonstrate this, in single-threaded programming you bind the result of a
function call to a variable like this:

def aShortRunningTask(): Int = 42
val x = aShortRunningTask

With code like that, the value 42 is bound to the variable x immediately.

When you’re working with a Future, the assignment process looks similar:

def aLongRunningTask(): Future[Int] = ???
val x = aLongRunningTask

But because aLongRunningTask takes an indeterminate amount of time to return, the
value in x may or may not be currently available, but it will be available at some point
(in the future).

Another important point to know about futures is that they’re intended as a one-shot,
“Handle this relatively slow computation on some other thread, and call me back with
a result when you’re done” construct. (As a point of comparison, Akka actors are in-

207

https://www.scala-lang.org/api/current/scala/concurrent/Future$.html
https://akka.io

208 CHAPTER 53. SCALA FUTURES

tended to run for a long time and respond to many requests during their lifetime, but
each future you create is intended to be run only once.)

In this lesson you’ll see how to use futures, including how to run multiple futures in
parallel and combine their results in a for-expression, along with other methods that
are used to handle the value in a future once it returns.

Tip: If you’re just starting to work with futures and find the name Fu-
ture to be confusing in the following examples, replace it with the name
ConcurrentResult, which might be easier to understand initially.

53.1 Source code

You can find the source code for this lesson at this URL:

• github.com/alvinj/HelloScalaFutures

53.2 An example in the REPL

A Scala Future is used to create a temporary pocket of concurrency that you use for
one-shot needs. You typically use it when you need to call an algorithm that runs an
indeterminate amount of time — such as calling a web service or executing a long-
running algorithm — so you therefore want to run it off of the main thread.

To demonstrate how this works, let’s start with an example of a Future in the Scala
REPL. First, paste in these import statements:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.util.{Failure, Success}

Now, you’re ready to create a future. For example, here’s a future that sleeps for ten
seconds and then returns the value 42:

scala> val a = Future { Thread.sleep(10*1000); 42 }
a: scala.concurrent.Future[Int] = Future(<not completed>)

While that’s a simple example, it shows the basic approach: Just construct a new Future
with your long-running algorithm.

https://github.com/alvinj/HelloScalaFutures

53.3. AN EXAMPLE APPLICATION 209

Because a Future has a map function, you use it as usual:

scala> val b = a.map(_ * 2)
b: scala.concurrent.Future[Int] = Future(<not completed>)

Initially this shows Future(<not completed>), but if you check b’s value you’ll see
that it eventually contains the expected result of 84:

scala> b
res1: scala.concurrent.Future[Int] = Future(Success(84))

Notice that the 84 you expected is wrapped in a Success, which is further wrapped in
a Future. This is a key point to know: The value in a Future is always an instance of
one of the Try types: Success or Failure. Therefore, when working with the result of
a future, use the usual Try-handling techniques, or one of the other Future callback
methods.

One commonly used callback method is onComplete, which takes a partial function in
which you should handle the Success and Failure cases, like this:

a.onComplete {
case Success(value) => println(s"Got the callback, value = $value")
case Failure(e) => e.printStackTrace

}

When you paste that code in the REPL you’ll see the result:

Got the callback, value = 42

There are other ways to process the results from futures, and the most common meth-
ods are listed later in this lesson.

53.3 An example application

The following application (App) provides an introduction to using multiple futures. It
shows several key points about how to work with futures:

• How to create futures

• How to combine multiple futures in a for expression to obtain a single result

https://alvinalexander.com/scala/how-to-define-use-partial-functions-in-scala-syntax-examples

210 CHAPTER 53. SCALA FUTURES

• How to work with that result once you have it

53.3.1 A potentially slow-running method

First, imagine you have a method that accesses a web service to get the current price
of a stock. Because it’s a web service it can be slow to return, and even fail. As a result,
you create a method to run as a Future. It takes a stock symbol as an input parameter
and returns the stock price as a Double inside a Future, so its signature looks like this:

def getStockPrice(stockSymbol: String): Future[Double] = ???

To keep this tutorial simple we won’t access a real web service, so we’ll mock up a
method that has a random run time before returning a result:

def getStockPrice(stockSymbol: String): Future[Double] = Future {
val r = scala.util.Random
val randomSleepTime = r.nextInt(3000)
val randomPrice = r.nextDouble * 1000
sleep(randomSleepTime)
randomPrice

}

That method sleeps a random time up to 3000 ms, and also returns a random stock
price. Notice how simple it is to create a method that runs as a Future: Just pass a
block of code into the Future constructor to create the method body.

Next, imagine that you’re instructed to get three stock prices in parallel, and return
their results once all three return. To do so, you write code like this:

package futures

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.Future
import scala.util.{Failure, Success}

object MultipleFutures extends App {

// use this to determine the “delta time” below
val startTime = currentTime

53.3. AN EXAMPLE APPLICATION 211

// (a) create three futures
val aaplFuture = getStockPrice("AAPL")
val amznFuture = getStockPrice("AMZN")
val googFuture = getStockPrice("GOOG")

// (b) get a combined result in a for-expression
val result: Future[(Double, Double, Double)] = for {

aapl <- aaplFuture
amzn <- amznFuture
goog <- googFuture

} yield (aapl, amzn, goog)

// (c) do whatever you need to do with the results
result.onComplete {

case Success(x) => {
val totalTime = deltaTime(startTime)
println(s"In Success case, time delta: ${totalTime}")
println(s"The stock prices are: $x")

}
case Failure(e) => e.printStackTrace

}

// important for a short parallel demo: you need to keep
// the jvm’s main thread alive
sleep(5000)

def sleep(time: Long): Unit = Thread.sleep(time)

// a simulated web service
def getStockPrice(stockSymbol: String): Future[Double] = Future {

val r = scala.util.Random
val randomSleepTime = r.nextInt(3000)
println(s"For $stockSymbol, sleep time is $randomSleepTime")
val randomPrice = r.nextDouble * 1000
sleep(randomSleepTime)
randomPrice

}

212 CHAPTER 53. SCALA FUTURES

def currentTime = System.currentTimeMillis()
def deltaTime(t0: Long) = currentTime - t0

}

Question: If everything truly runs in parallel, can you guess what the maximum value
of the totalTime will be?

Answer: Because the three simulated web service calls do run in parallel, the total time
should never be much longer than three seconds (3000ms). If they were run in series,
the algorithm might run up to nine seconds.

This can be a fun little application to experiment with, so you’re encouraged to clone
the Github project and run it before continuing this lesson. When you do so, first run
it tomake sure it works as expected, then change it as desired. If you run into problems,
add println statements to the code so you can completely understand how it works.

Tip: The Github repository for this lesson also contains a class named
MultipleFuturesWithDebugOutput that contains the same code with a
lot of debug println statements.

53.3.2 Creating the futures

Let’s walk through that code to see how it works. First, we create three futures with
these lines of code:

val aaplFuture = getStockPrice("AAPL")
val amznFuture = getStockPrice("AMZN")
val googFuture = getStockPrice("GOOG")

As you saw, getStockPrice is defined like this:

def getStockPrice(stockSymbol: String): Future[Double] = Future { ...

If you remember the lesson on companion objects, the way the body of that method
works is that the code in between the curly braces is passed into the apply method of
Future’s companion object, so the compiler translates that code to something like this:

def getStockPrice ... = Future.apply { method body here }

53.3. AN EXAMPLE APPLICATION 213

An important thing to know about Future is that it immediately begins running the
block of code inside the curly braces — it isn’t like the Java Thread, where you create
an instance and later call its start method. You can see this very clearly in the debug
output of the MultipleFuturesWithDebugOutput example, where the debug output in
getStockPrice prints three times when the AAPL, AMZN, and GOOG futures are
created, almost immediately after the application is started.

The three method calls eventually return the simulated stock prices. In fact, people
often use the word eventually with futures because you typically use them when the
return time of the algorithm is indeterminate: You don’t know when you’ll get a result
back, you just hope to get a successful result back “eventually” (though you may also
get an unsuccessful result).

53.3.3 The for expression

The for expression in the application looks like this:

val result: Future[(Double, Double, Double)] = for {
aapl <- aaplFuture
amzn <- amznFuture
goog <- googFuture

} yield (aapl, amzn, goog)

You can read this as, “Whenever aapl, amzn, and goog all return with their values, com-
bine them in a tuple, and assign that value to the variable result.” As shown, result
has the type Future[(Double, Double, Double)], which is a tuple that contains three
Double values, wrapped in a Future container.

It’s important to know that the application’s main thread doesn’t stop when getStock-
Price is called, and it doesn’t stop at this for-expression either. In fact, if you print
the result from System.currentTimeMillis() before and after the for-expression, you
probably won’t see a difference of more than a few milliseconds. You can see that for
yourself in the MultipleFuturesWithDebugOutput example.

214 CHAPTER 53. SCALA FUTURES

53.4 onComplete

The final part of the application looks like this:

result.onComplete {
case Success(x) => {

val totalTime = deltaTime(startTime)
println(s"In Success case, time delta: ${totalTime}")
println(s"The stock prices are: $x")

}
case Failure(e) => e.printStackTrace

}

onComplete is a method that’s available on a Future, and you use it to process the
future’s result as a side effect. In the same way that the foreach method on collections
classes returns Unit and is only used for side effects, onComplete returns Unit and you
only use it for side effects like printing the results, updating a GUI, updating a database,
etc.

You can read that code as, “Whenever result has a final value — i.e., after all of the
futures return in the for-expression — come here. If everything returned successfully,
run the println statement shown in the Success case. Otherwise, if an exception was
thrown, go to the Failure case and print the exception’s stack trace.”

As that code implies, it’s completely possible that a Futuremay fail. For example, imag-
ine that you call a web service, but the web service is down. That Future instance will
contain an exception, so when you call result.onComplete like this, control will flow
to the Failure case.

It’s important to note that just as the JVM’smain thread didn’t stop at the for-expression,
it doesn’t block here, either. The code inside onComplete doesn’t execute until after the
for-expression assigns a value to result.

53.4.1 About that sleep call

A final point to note about small examples like this is that you need to have a sleep
call at the end of your App:

sleep(5000)

53.5. OTHER FUTURE METHODS 215

That call keeps the main thread of the JVM alive for five seconds. If you don’t include
a call like this, the JVM’s main thread will exit before you get a result from the three
futures, which are running on other threads. This isn’t usually a problem in the real
world, but it’s needed for little demos like this.

53.4.2 The other code

There are a few println statements in the code that use these methods:

def currentTime = System.currentTimeMillis()
def deltaTime(t0: Long) = System.currentTimeMillis() - t0

There are only a few println statements in this code, so you can focus on how themain
parts of the application works. However, as you’ll see in the Github code, there are
many more println statements in the MultipleFuturesWithDebugOutput example
so you can see exactly how futures work.

53.5 Other Future methods

Futures have other methods that you can use. Common callback methods are:

• onComplete
• onSuccess
• onFailure

In addition to thosemethods, futures havemethods that you’ll find on Scala collections
classes, including:

• filter
• foreach
• map

Other useful and well-named methods include:

• andThen
• fallbackTo

216 CHAPTER 53. SCALA FUTURES

• recoverWith

These methods and many more details are discussed on the “Futures and Promises”
page.

53.6 Key points

While this was a short introduction, hopefully those examples give you an idea of how
Scala futures work. A few key points about futures are:

• You construct futures to run tasks off of the main thread
• Futures are intended for one-shot, potentially long-running concurrent tasks

that eventually return a value
• A future starts running as soon as you construct it
• A benefit of futures over threads is that they come with a variety of callback

methods that simplify the process of workingwith concurrent threads, including
the handling of exceptions and thread management

• Handle the result of a futurewithmethods like onComplete, or combinatormeth-
ods like map, flatMap, filter, andThen, etc.

• The value in a Future is always an instance of one of the Try types: Success or
Failure

• If you’re using multiple futures to yield a single result, you’ll often want to com-
bine them in a for-expression

53.7 See also

• A small demo GUI application named Future Board was written to accompany
this lesson. It works a little like Flipboard, updating a group of news sources
simultaneously. You can find the source code for Future Board in this Github
repository.

• While futures are intended for one-short, relatively short-lived concurrent pro-
cesses, Akka is an “actor model” library for Scala, and provides a terrific way to
implement long-running parallel processes. (If this term is new to you, an actor
is a long-running process that runs in parallel to the main application thread,
and responds to messages that are sent to it.)

%7B%7Bsite.baseurl%7D%7D/overviews/core/futures.html
%7B%7Bsite.baseurl%7D%7D/overviews/core/futures.html
https://flipboard.com
https://github.com/alvinj/FPFutures
https://github.com/alvinj/FPFutures
https://akka.io

54
Where To Go Next

We hope you enjoyed this introduction to the Scala programming language, and we
also hope we were able to share some of the beauty of the language.

As you continue working with Scala, you can find many more details at the Guides and
Overviews section of our website.

217

%7B%7Bsite.baseurl%7D%7D/overviews/index.html
%7B%7Bsite.baseurl%7D%7D/overviews/index.html

	Introduction
	Prelude: A Taste of Scala
	Preliminaries
	Scala Features
	Hello, World
	Hello, World - Version 2
	The Scala REPL
	Two Types of Variables
	The Type is Optional
	A Few Built-In Types
	Two Notes About Strings
	Command-Line I/O
	Control Structures
	The if/then/else Construct
	for Loops
	for Expressions
	match Expressions
	try/catch/finally Expressions
	Scala Classes
	Auxiliary Class Constructors
	Supplying Default Values for Constructor Parameters
	A First Look at Scala Methods
	Enumerations (and a Complete Pizza Class)
	Scala Traits and Abstract Classes
	Using Scala Traits as Interfaces
	Using Scala Traits Like Abstract Classes
	Abstract Classes
	Scala Collections
	The ArrayBuffer Class
	The List Class
	The Vector Class
	The Map Class
	The Set Class
	Anonymous Functions
	Common Sequence Methods
	Common Map Methods
	A Few Miscellaneous Items
	Tuples
	An OOP Example
	SBT and ScalaTest
	The Scala Build Tool (SBT)
	Using ScalaTest with SBT
	Writing BDD Style Tests with ScalaTest and SBT
	Functional Programming
	Pure Functions
	Passing Functions Around
	No Null Values
	Companion Objects
	Case Classes
	Case Objects
	Functional Error Handling in Scala
	Concurrency
	Scala Futures
	Where To Go Next

