

Hello, Scala

Alvin Alexander

Learn Scala fast
with small, easy lessons

Copyright

Hello, Scala

Copyright 2018 Alvin J. Alexander1

All rights reserved. No part of this book may be reproduced without prior written
permission from the author.

This book is presented solely for educational purposes. While best efforts have been
made to prepare this book, the author makes no representations or warranties of any
kind and assumes no liabilities of any kindwith respect to the accuracy or completeness
of the contents, and specifically disclaims any implied warranties of merchantability or
fitness of use for a particular purpose. The author shall not be held liable or responsible
to any person or entity with respect to any loss or incidental or consequential damages
caused, or alleged to have been caused, directly or indirectly, by the information or
programs contained herein. Any use of this information is at your own risk.

Version 1.0, published September 3, 2018

Book errata can be found at alvinalexander.com/hello-scala2

1https://alvinalexander.com
2https://alvinalexander.com/hello-scala

https://alvinalexander.com
https://alvinalexander.com/hello-scala
https://alvinalexander.com
https://alvinalexander.com/hello-scala

Contents

1 Preface 1

2 Prelude: A Taste of Scala 3

3 The Scala Programming Language 17

4 Hello, World 19

5 Hello, World (Version 2) 23

6 The Scala REPL 25

7 Two Types of Variables 29

8 The Type is Optional 33

9 A Few Built-In Types 35

10 Two Notes About Strings 37

11 Command-Line I/O 41

12 Control Structures 43

13 The if/then/else Construct 45

14 for and while Loops 47

15 for Expressions 51

16 match Expressions 55

CONTENTS

17 try/catch/finally Expressions 63

18 Classes 65

19 Auxiliary Class Constructors 71

20 Supplying Default Values for Constructor Parameters 73

21 A First Look at Methods 75

22 Enumerations (and a Complete Pizza Class) 81

23 Traits and Abstract Classes 87

24 Using Traits as Interfaces 89

25 Using Traits Like Abstract Classes 93

26 Abstract Classes 99

27 Collections Classes 103

28 ArrayBuffer Class 105

29 Summary 109

1
Preface

Have you ever fallen in love with a programming language? I still remember when I
first saw the book,The C Programming Language, and how I fell in love with its simple
syntax and the ability to interact with a computer at a low level. In 1996 I loved Java
because it made OOP simple. A few years later I found Ruby and loved its elegance.

Then in 2011 I was aimlessly wandering around Alaska and stumbled across the book,
Programming in Scala, and I was stunned by its remarkable marriage of Ruby and Java:

• The syntax was as elegant and concise as Ruby
• It feels dynamic, but it’s statically typed
• It compiles to class files that run on the JVM
• You can use the thousands of Java libraries in existence with your Scala code

In the first edition of the book, Beginning Scala, David Pollak states that Scala will
change the way you think about programming, and that’s a good thing. Learning Scala
has not only been a joy, but it’s ledme on a journey to appreciate concepts like modular
programming, immutability, referential transparency, and functional programming,
and most importantly, how those ideas help to dramatically reduce bugs in my code.

1.1 Is Scala DICEE?

DICEE is an acronym that was coined by Guy Kawasaki, who became famous as a de-
veloper evangelist for the original Apple Macintosh team. He says that great products
are DICEE, meaning Deep, Indulgent, Complete, Elegant, and Emotive:

• Deep: The product doesn’t run out of features and functionality after a fewweeks
of use. Its creators have anticipated what you’ll need once you come up to speed.
As your demands get more sophisticated, you won’t need a different product.

• Indulgent: A great product is a luxury. It makes you feel special when you buy it
(and use it).

1

2 CHAPTER 1. PREFACE

• Complete: A great product ismore than a physical thing. Documentation counts.
Customer service counts. Tech support counts.

• Elegant: A great product has an elegant user interface. Things work the way
you’d think they would. A great product doesn’t fight you, it enhances you.

• Emotive: A great product incites you to action. It is so deep, indulgent, complete,
and elegant that it compels you to tell other people about it. You’re bringing the
good news to help others, not yourself.

Two years after discovering Scala — way back in 2013 — I came to the conclusion that
it meets the definition of DICEE, and I think it’s just as true today:

• Scala is deep: After all these years I continue to learn new techniques to write
better code.

• Scala is indulgent: Just like Ruby, I feel special and fortunate to use a language
that’s so well thought out.

• Scala is complete: The documentation is excellent, terrific frameworks exist, and
the support groups are terrific.

• Scala is elegant: Once you grasp its main concepts you’ll fall in love with how it
works just like you expect it to.

• Scala is emotive: Everyone who works with it wants to tell you how special it is.
Myself, I had never written a programming book in my life, but by 2012 I was
eagerly mailing people at O’Reilly to tell them how much I wanted to write the
Scala Cookbook1.

As I write this book many years later I hope to share not just the nuts and bolts of the
Scala language, but also its elegance and the joy of using it.

Alvin Alexander
https://alvinalexander.com

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

2
Prelude: A Taste of Scala

My hope in this book is to demonstrate that Scala1 is a beautiful, modern, expressive
programming language. To get started with that, in this first chapter I jump right in
and provide a whirlwind tour of Scala’s main features in about ten pages. After the tour,
the book continues with a more traditional “Getting Started” chapter.

In this book I assume that you’ve used a language like C or Java before,
and are ready to see a series of Scala examples to get a feel for the lan-
guage. Although it’s not 100% necessary, it will also help if you’ve already
downloaded and installed Scala2 so you can test the examples as you go
along.

2.1 Overview

Before we jump into the examples, here are a few important things to know about Scala:

• It’s a high-level language
• It’s statically typed
• Its syntax is concise but still readable — we call it expressive
• It supports the object-oriented programming (OOP) paradigm
• It supports the functional programming (FP) paradigm
• It has a sophisticated type inference system
• It has traits, which are a combination of interfaces and abstract classes that can

be used as mixins, and support a modular programming style
• Scala code results in .class files that run on the Java Virtual Machine (JVM)
• It’s easy to use Java libraries in Scala

1http://scala-lang.org/
2https://www.scala-lang.org/download/

3

http://scala-lang.org/
https://www.scala-lang.org/download/
http://scala-lang.org/
https://www.scala-lang.org/download/

4 CHAPTER 2. PRELUDE: A TASTE OF SCALA

2.2 Hello, world

Ever since the book, The C Programming Language3, it’s been a tradition to begin
programming books with a “Hello, world” example, and not to disappoint, this is one
way to write that example in Scala:

object Hello extends App {

println("Hello, world")

}

After you save that code to a file named Hello.scala you can compile it with scalac:

$ scalac Hello.scala

scalac is just like javac, and that command creates two files:

• Hello$.class

• Hello.class

These are the same “.class” bytecode files you create with javac, and they’re ready to
run in the JVM. You run the Hello application with the scala command:

$ scala Hello

I share more “Hello, world” examples in the lessons that follow, so I’ll leave that intro-
duction as is for now.

2.3 The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a “playground” area to test your Scala code. I introduce it early here so you can
use it with the code examples that follow.

To start a REPL session, just type scala at your operating system command line, and
you’ll see something like this:

3http://amzn.to/2CsDmYa

http://amzn.to/2CsDmYa
http://amzn.to/2CsDmYa

2.4. TWO TYPES OF VARIABLES 5

$ scala

Welcome to Scala 2.12.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).

Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it sits there waiting for you to type
something. Inside the REPL you type Scala expressions to see how they work:

scala> val x = 1

x: Int = 1

scala> val y = x + 1

y: Int = 2

As those examples show, after you type an expression, the REPL shows the result of the
expression on the line following the prompt.

2.4 Two types of variables

Scala has two types of variables:

• val is an immutable variable — like final in Java — and should be preferred

• var creates a mutable variable, and should only be used when there is a specific
reason to use it

Examples:

val x = 1 //immutable

var y = 0 //mutable

2.5 Implicit and explicit variable types

In Scala, you typically create variables without declaring their type:

val x = 1

val s = "a string"

val p = new Person("Kimberly")

6 CHAPTER 2. PRELUDE: A TASTE OF SCALA

This is known as an implicit type style.

You can also explicitly declare a variable’s type, but that’s not usually necessary:

val x: Int = 1

val s: String = "a string"

val p: Person = new Person("Kimberly")

Because showing a variable’s type like that isn’t necessary — and actually feels need-
lessly verbose — I rarely use this explicit syntax. (I explain when I use it later in the
book.)

2.6 Testing object equality

In Scala everything is an object, and you use == to test object equality:

val a = "foo"

val b = "foo"

a == b // true

case class Store(name: String)

val a = Store("Flowers By Hala")

val b = Store("Flowers By Hala")

a == b // true

2.7 Control structures

Here’s a quick tour of Scala’s control structures.

2.7.1 if/else

Scala’s if/else control structure is similar to other languages:

if (test1) {

doA()

} else if (test2) {

doB()

2.7. CONTROL STRUCTURES 7

} else if (test3) {

doC()

} else {

doD()

}

The if/else construct is an expression that returns a value, so you can also use it as a
ternary operator:

val x = if (a < b) a else b

2.7.2 match expressions

Scala has a match expression, which in itsmost basic use is like a Java switch statement:

val result = i match {

case 1 => "one"

case 2 => "two"

case _ => "not 1 or 2"

}

As shown, the _ case is a catch-all case that handles any pattern that isn’t matched by
the previous case statements.

The match expression isn’t limited to just integers, it can be used with any data type.
Here it’s used with a Boolean variable named bool:

val booleanAsString = bool match {

case true => "true"

case false => "false"

}

Here’s an example of match being used as the body of a method, and matching against
many different types:

8 CHAPTER 2. PRELUDE: A TASTE OF SCALA

def getClassAsString(x: Any): String = x match {

case s: String => s + " is a String"

case i: Int => "Int"

case f: Float => "Float"

case l: List[_] => "List"

case p: Person => "Person"

case _ => "Unknown"

}

Powerful match expressions are a big feature of Scala.

2.7.3 try/catch

Scala’s try/catch control structure lets you catch exceptions. It’s similar to Java, but its
syntax is consistent with match expressions:

try {

writeToFile(text)

} catch {

case fnfe: FileNotFoundException => println(fnfe)

case ioe: IOException => println(ioe)

}

2.7.4 for loops and expressions

Scala for loops — which I refer to in this book as for-loops — look like this:

for (arg <- args) println(arg)

// "x to y" syntax

for (i <- 0 to 5) println(i)

// "x to y by" syntax

for (i <- 0 to 10 by 2) println(i)

2.8. CLASSES 9

You can also add the yield keyword to for-loops to create for-expressions that yield a
result. Here’s a for-expression that doubles each value in the sequence 1 to 3:

val x = for (i <- 1 to 3) yield i * 2 //yields Vector(2, 4, 6)

Here’s another for-expression that iterates over a list of strings:

val fruits = List("apple", "banana", "lime", "orange")

val fruitLengths = for {

f <- fruits

if f.length > 4

} yield f.length

Because Scala code generally just makes sense, I’ll imagine that you can guess how that
code works, even if you’ve never seen a for-expression or Scala List until now.

Scala also has while and do/while loops, but I rarely use them.

2.8 Classes

Here’s an example of a Scala class:

class Person(var firstName: String, var lastName: String) {

def printFullName() {

println(s"$firstName $lastName")

}

}

Here’s an example of how to use that class:

val p = new Person("Julia", "Kern")

println(p.firstName) //Julia

p.lastName = "Manes"

p.printFullName() //Julia Manes

Notice that there’s no need to create “get” and “set” methods to access the fields in the
class.

10 CHAPTER 2. PRELUDE: A TASTE OF SCALA

As a more complicated example, here’s a Pizza class that you’ll see later in the book:

class Pizza (

var crustSize: CrustSize,

var crustType: CrustType,

val toppings: ArrayBuffer[Topping]

) {

def addTopping(t: Topping): Unit = { toppings += t }

def removeTopping(t: Topping): Unit = { toppings -= t }

def removeAllToppings(): Unit = { toppings.clear() }

}

In that code, an ArrayBuffer is like Java’s ArrayList. I don’t show the CrustSize,
CrustType, and Topping classes, but I suspect that you can understand how that code
works without needing to see those classes.

2.9 Scala methods

Just like other OOP languages, Scala classes have methods, and this is what Scala’s
method syntax looks like:

def sum(a: Int, b: Int): Int = a + b

def concatenate(s1: String, s2: String): String = s1 + s2

You don’t have to declare a method’s return type, so it’s perfectly legal to write those
two methods like this, if you prefer:

def sum(a: Int, b: Int) = a + b

def concatenate(s1: String, s2: String) = s1 + s2

This is how you call those methods:

val x = sum(1, 2)

val y = concatenate("foo", "bar")

There are more things you can do with methods, such as providing default values for
method parameters, but that’s a good start for now.

2.10. TRAITS 11

2.10 Traits

Traits in Scala are a lot of fun, and they also let you break your code down into small,
modular units. To demonstrate traits, here’s an example from later in the book. Given
these three traits:

trait Speaker {

def speak(): String // has no body, so it’s abstract

}

trait TailWagger {

def startTail(): Unit = { println("tail is wagging") }

def stopTail(): Unit = { println("tail is stopped") }

}

trait Runner {

def startRunning(): Unit = { println("I'm running") }

def stopRunning(): Unit = { println("Stopped running") }

}

You can create a Dog class that extends all of those traits while providing behavior for
the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {

def speak(): String = "Woof!"

}

Similarly, here’s a Cat class that shows how to override trait methods:

class Cat extends Speaker with TailWagger with Runner {

def speak(): String = "Meow"

override def startRunning(): Unit = { println("Yeah ... I don't run") }

override def stopRunning(): Unit = { println("No need to stop") }

}

If that code makes sense — great, you’re comfortable with traits! If not, don’t worry, I
explain them in detail later in the book.

12 CHAPTER 2. PRELUDE: A TASTE OF SCALA

2.11 Collections classes

Based onmy own experience, here’s an important rule to know about Scala’s collections
classes:

If you’re coming to Scala from Java, forget what you know about Java’s
collections classes, and use the Scala collections classes.

You can use the Java collections classes in Scala, and I did so for several months, but
when youdo that you’re slowing downyour own learning process. TheScala collections
classes offer many powerful methods that you’ll want to start using ASAP.

2.11.1 Populating lists

There are times when it’s helpful to create sample lists that are populated with data, and
Scala offers many ways to populate lists. Here are just a few:

val nums = List.range(0, 10)

val nums = 1 to 10 by 2 toList

val letters = ('a' to 'f').toList

val letters = ('a' to 'f') by 2 toList

2.11.2 Sequence methods

While there are many sequential collections classes you can use, let’s look at some ex-
amples of what you can do with the Scala List class. Given these two lists:

val nums = (1 to 10).toList

val names = List("joel", "ed", "chris", "maurice")

This is the foreach method:

scala> names.foreach(println)

joel

ed

chris

maurice

2.11. COLLECTIONS CLASSES 13

Here’s the filter method, followed by foreach:

scala> nums.filter(_ < 4).foreach(println)

1

2

3

Here are some examples of the map method:

scala> val doubles = nums.map(_ * 2)

doubles: List[Int] = List(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

scala> val capNames = names.map(_.capitalize)

capNames: List[String] = List(Joel, Ed, Chris, Maurice)

scala> val lessThanFive = nums.map(_ < 5)

lessThanFive: List[Boolean] = List(true, true, true, true, false, false, false,

false, false, false)

Even though I didn’t explain it, you can see how mapworks: It applies an algorithm you
supply to every element in the collection, returning a new, transformed value for each
element.

If you’re ready to see one of the most powerful collections methods, here’s reduce:

scala> nums.reduce(_ + _)

res0: Int = 55

scala> nums.reduce(_ * _)

res1: Int = 3628800

Even though I didn’t explain reduce, you can guess that the first example yields the
sum of the numbers in nums, and the second example returns the product of all those
numbers.

There are many (many!) more methods available to Scala collections classes, but hope-
fully this gives you an idea of their power.

14 CHAPTER 2. PRELUDE: A TASTE OF SCALA

There’s somuchpower in the Scala collections class, I spendover 100 pages
discussing them in the Scala Cookbook4.

2.12 Tuples

Tuples let you put a heterogenous collection of elements in a little container. Tuples can
contain between two and 22 variables, and they can all be different types. For example,
given a Person class like this:

class Person(var name: String)

You can create a tuple that contains three different types like this:

val t = (11, "Eleven", new Person("Eleven"))

You can access the tuple values by number:

t._1 // 11

t._2 // "Eleven"

t._3 // Person("Eleven")

Or assign the tuple fields to variables:

val(num, string, person) = (11, "Eleven", new Person("Eleven"))

I don’t overuse tuples, but they’re nice for those times when you need to put a little
“bag” of things together for a little while.

2.13 What I haven’t shown

While that was a whirlwind introduction to Scala in about ten pages, there are many
features I haven’t shown yet, including:

• Strings and built-in numeric types
• Packaging and imports

4http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

2.14. A BIT OF BACKGROUND 15

• How to use Java collections classes in Scala
• How to use Java libraries in Scala
• How to build Scala projects
• How to perform unit testing in Scala
• How to write Scala shell scripts
• Maps, Sets, and other collections classes
• Object-oriented programming
• Functional programming
• Concurrency with Futures and Akka
• More …

If you like what you’ve seen so far, I hope you’ll like the rest of the book.

2.14 A bit of background

Scala was created byMartinOdersky5, who studied underNiklausWirth6, who created
Pascal and several other languages. Mr. Odersky is one of the co-designers of Generic
Java, and is also known as the “father” of the javac compiler.

5https://en.wikipedia.org/wiki/Martin_Odersky
6https://en.wikipedia.org/wiki/Niklaus_Wirth

https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Niklaus_Wirth
https://en.wikipedia.org/wiki/Martin_Odersky
https://en.wikipedia.org/wiki/Niklaus_Wirth

16 CHAPTER 2. PRELUDE: A TASTE OF SCALA

3
The Scala Programming Language

The name Scala comes from the word scalable, and true to that name, it’s used to
power the busiest websites in the world, including Twitter, Netflix, Tumblr, LinkedIn,
Foursquare, and many more.

Here are a few more nuggets about Scala:

• It’s a modern programming language created by Martin Odersky1, and influ-
enced by Java, Ruby, Standard ML, Pizza2, Lisp, Haskell, OCaml, and others.

• It’s a high-level language.
• It’s statically typed.
• It has a sophisticated type inference system.
• It’s syntax is concise but still readable — we call it expressive.
• It’s a pure object-oriented programming (OOP) language. Every variable is an

object, and every “operator” is a method.
• It’s also a functional programming (FP) language, so functions are also variables,

and you can pass them into other functions. You can write your code usingOOP,
FP, or combine them in a hybrid style.

• Scala source code compiles to “.class” files that run on the JVM.
• Scala also works extremely well with the thousands of Java libraries that have

been developed over the years.
• The Akka library3 provides an Actors API, which was originally based on the

actors concurrency model built into Erlang.
• The Play Framework4 is a lightweight, stateless, web development framework

1https://twitter.com/odersky
2https://en.wikipedia.org/wiki/Pizza_(programming_language)
3https://akka.io
4https://www.playframework.com/

17

https://twitter.com/odersky
https://en.wikipedia.org/wiki/Pizza_(programming_language)
https://akka.io
https://www.playframework.com/
https://twitter.com/odersky
https://en.wikipedia.org/wiki/Pizza_(programming_language)
https://akka.io
https://www.playframework.com/

18 CHAPTER 3. THE SCALA PROGRAMMING LANGUAGE

that’s built with Scala and Akka. (In addition to Play there are several other
popular web frameworks.)

• A great thing about Scala is that you can be productive with it on Day 1, but it’s
also a deep language, so as you go along you’ll keep learning, and finding newer,
better ways to write code. It’s said that Scala will change the way you think about
programming (and that’s a good thing).

• Of all of Scala’s benefits, what I like best is that it lets you write concise, readable
code. The time a programmer spends reading code compared to the time spent
writing code is said to be at least a 10:1 ratio, so writing code that’s concise and
readable is a big deal. Because Scala has these attributes, programmers say that
it’s expressive.

4
Hello, World

Let’s look at the “Hello, world” example again:

object Hello {

def main(args: Array[String]) {

println("Hello, world")

}

}

Using a text editor, save that source code in a file named Hello.scala. After saving it,
run this scalac command at your command line prompt to compile it:

$ scalac Hello.scala

scalac is just like javac, and that command creates two new files:

• Hello$.class
• Hello.class

These are the same types of “.class” bytecode files you create with javac, and they’re
ready to work with the JVM.

Now you can run the Hello application with the scala command:

$ scala Hello

4.1 Discussion

Here’s the original source code again:

19

20 CHAPTER 4. HELLO, WORLD

object Hello {

def main(args: Array[String]) {

println("Hello, world")

}

}

Here’s a short description of that code:

• It defines a method named main inside a Scala object named Hello

• An object is similar to a class, but you specifically use it when you want a
singleton object

– If you’re coming to Scala from Java, this means that main is just like a
static method (I write more on this later)

• main takes an input parameter named args that is a string array
• Array is a class that wraps the Java array primitive

That Scala code is pretty much the same as this Java code:

public class Hello {

public static void main(String[] args) {

System.out.println("Hello, world")

}

}

4.2 Going deeper: Scala creates .class files

As I mentioned, when you run the scalac command it creates .class JVM bytecode
files. You can see this for yourself. As an example, run this javap command on the
Hello.class file:

$ javap Hello.class

Compiled from "Hello.scala"

public final class Hello {

public static void main(java.lang.String[]);

}

4.2. GOING DEEPER: SCALA CREATES .CLASS FILES 21

As that output shows, the javap command reads that .class file just as if it was created
from Java source code. Scala code runs on the JVM and can use existing Java libraries,
and both are terrific benefits for Scala programmers.

4.2.1 Peaking behind the curtain

To be more precise, what happens is that Scala source code is initially compiled to Java
source code, and then that source code is turned into bytecode that works with the
JVM. I explain some details of this process in the Scala Cookbook1.

If you’re interested inmore details on this process right now, see the “Using scalac print
options” section of my How to disassemble and decompile Scala code2 tutorial.

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-scalac

http://kbhr.co/hs-cook
http://kbhr.co/hs-scalac
http://kbhr.co/hs-cook
http://kbhr.co/hs-scalac

22 CHAPTER 4. HELLO, WORLD

5
Hello, World (Version 2)

While that first “Hello, World” example works just fine, Scala provides a way to write
applications more conveniently. Rather than including a main method, your object
can just extend the App trait, like this:

object Hello2 extends App {

println("Hello, world")

}

If you save that code toHello.scala, compile it with scalac and run it with scala, you’ll
see the same result as the previous lesson.

What happens here is that the App trait has its own main method, so you don’t need to
write one. I’ll show later on how you can access command-line arguments with this
approach, but the short story is that it’s easy: they’re made available to you in a string
array named args.

A Scala trait is similar to an abstract class in Java. More accurately, it’s a
combination of an abstract class and an interface — more on this later!

5.1 Extra credit

If you want to see how command-line arguments work when your object extends the
App trait, save this source code in a file named HelloYou.scala:

object HelloYou extends App {

if (args.size == 0)

println("Hello, you")

else

println("Hello, " + args(0))

}

23

24 CHAPTER 5. HELLO, WORLD (VERSION 2)

Then compile it with scalac:

scalac HelloYou.scala

Then run it with and without command-line arguments. Here’s an example:

$ scala HelloYou

Hello, you

$ scala HelloYou Al

Hello, Al

This shows:

• When you extend the App trait, command-line arguments are automatically
made available to you in a variable named args.

• You determine the number of elements in args with args.size (or
args.length, if you prefer).

• args is an Array, and you access Array elements as args(0), args(1), etc. Be-
cause args is an object, you access the array elements with parentheses (not []
or any other special syntax).

6
The Scala REPL

The Scala REPL (“Read-Evaluate-Print-Loop”) is a command-line interpreter that you
use as a playground area to test your Scala code. To start a REPL session just type scala
at your operating system command line, and you’ll see something like this:

$ scala

Welcome to Scala 2.12.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_131).

Type in expressions for evaluation. Or try :help.

scala> _

Because the REPL is a command-line interpreter, it just sits there waiting for you to
type something. Once you’re in the REPL, you can type Scala expressions to see how
they work:

scala> val x = 1

x: Int = 1

scala> val y = x + 1

y: Int = 2

As those examples show, just type your expressions inside the REPL, and it shows the
result of each expression on the line following the prompt.

6.1 Variables are created as needed

If you don’t assign the result of your expression to a variable, the REPL automatically
creates variables that start with the name res. The first variable is res0, the second one
is res1, etc.:

scala> 2 + 2

res0: Int = 4

25

26 CHAPTER 6. THE SCALA REPL

scala> 3 / 3

res1: Int = 1

These are actual variable names that are dynamically created, and you can use them in
your expressions:

scala> val z = res0 + res1

z: Int = 5

You’re going to use the REPL a lot in this book, so go ahead and start experimenting
with it. Here are a few expressions you can try to see how it all works:

val name = "John Doe"

"hello".head

"hello".tail

"hello, world".take(5)

println("hi")

1 + 2 * 3

(1 + 2) * 3

if (2 > 1) println("greater") else println("lesser")

While I prefer to use the REPL, there are a couple of other, similar tools you can use:

• The Scala IDE for Eclipse has aWorksheet plugin that lets you do the same things
inside your IDE

• IntelliJ IDEA also has a Worksheet
• scalafiddle.io1 lets you do a similar thing in a web browser (just remember to

press “Run”)

1https://scalafiddle.io/

https://scalafiddle.io/
https://scalafiddle.io/

6.2. MORE INFORMATION 27

6.2 More information

For more information on the Scala REPL, see these links:

• The REPL overview on scala-lang.org2

• My Getting started with the Scala REPL tutorial3

2https://docs.scala-lang.org/overviews/repl/overview.html
3http://kbhr.co/hs-repl

https://docs.scala-lang.org/overviews/repl/overview.html
http://kbhr.co/hs-repl
https://docs.scala-lang.org/overviews/repl/overview.html
http://kbhr.co/hs-repl

28 CHAPTER 6. THE SCALA REPL

7
Two Types of Variables

In Java you declare new variables like this:

String s = "hello";

int i = 42;

Person p = new Person("Joel Fleischman");

Each variable declaration is preceded by its type.

By contrast, Scala has only two types of variables:

• val creates an immutable variable (like final in Java)

• var creates a mutable variable

This is what variable declaration looks like in Scala:

val s = "hello" // immutable

var i = 42 // mutable

Here are some more examples:

val p = new Person("Joel Fleischman")

val nums = List(1, 2, 3)

Those examples show that the Scala compiler is usually smart enough to infer the vari-
able’s data type from the code on the right side of the = sign. This is considered an
implicit form. You can also explicitly declare the variable type if you prefer:

val s: String = "hello"

var i: Int = 42

In most cases the compiler doesn’t need to see those explicit types, but you can add
them if you think it makes your code easier to read. I usually use the explicit form

29

30 CHAPTER 7. TWO TYPES OF VARIABLES

when the type isn’t obvious.

As a practical matter I generally do this when working with complex code,
and when using methods in third-party libraries, especially when I don’t
use the library often or if their method names don’t make the type clear.
(I show examples of this later in the book.)

7.1 The difference between val and var

The difference between val and var is that val makes a variable immutable — like
final in Java — and varmakes a variablemutable. Because val fields can’t vary, some
people refer to them as values rather than variables.

The REPL shows what happens when you try to reassign a val field:

scala> val a = 'a'

a: Char = a

scala> a = 'b'

<console>:12: error: reassignment to val

a = 'b'

^

That fails with a “reassignment to val” error, as expected. Conversely, you can reassign
a var:

scala> var a = 'a'

a: Char = a

scala> a = 'b'

a: Char = b

In Scala the general rule is that you should always use a val field unless there’s a good
reason not to. This simple rule (a) makes your code more like algebra and (b) helps get
you started down the path to functional programming, where all fields are immutable.

7.2. “HELLO, WORLD” WITH A VAL FIELD 31

7.2 “Hello, world” with a val field

Here’s what a “Hello, world” app looks like with a val field:

object Hello3 extends App {

val hello = "Hello, world"

println(hello)

}

As before:

• Save that code in a file named Hello3.scala
• Compile it with scalac Hello3.scala

• Run it with scala Hello3

7.3 A note about val fields in the REPL

The REPL isn’t 100% the same as working with source code in an IDE, so there are a
few things you can do in the REPL that you can’t do when working on real-world code
in a project. One example of this is that you can reassign a val field in the REPL, like
this:

scala> val age = 18

age: Int = 18

scala> val age = 19

age: Int = 19

I thought I’d mention that because I didn’t want you to see it one day and think, “Hey,
Al said val fields couldn’t be reassigned.” They can be reassigned like that, but only in
the REPL.

32 CHAPTER 7. TWO TYPES OF VARIABLES

8
The Type is Optional

As I showed in the previous lesson, when you create a new variable in Scala you can
explicitly declare its type, like this:

val count: Int = 1

val name: String = "Alvin"

But …

8.1 The explicit form feels verbose

In most cases your code is easier to read when you leave the type off, so the implicit
form is preferred. For instance, in this example it’s obvious that the data type is Person,
so there’s no need to declare the type on the left side of the expression:

val p = new Person("Candy")

Indeed, when you put the type next to the variable name, the code feels unnecessarily
verbose:

val p: Person = new Person("Leo")

When creating new variables I rarely use that style.

8.2 Use the explicit form when you need to be clear

One place where you’ll want to show the data type is when you want to be clear about
what you’re creating. That is, if you don’t explicitly declare the data type, the compiler
may make a wrong assumption about what you want to create. Some examples of this
are when you want to create numbers with specific data types. I show this in the next
lesson.

33

34 CHAPTER 8. THE TYPE IS OPTIONAL

9
A Few Built-In Types

Scala comes with the standard numeric data types you’d expect. In Scala all of these
data types are full-blown objects (not primitive data types).

These examples show how to declare variables of the basic numeric types:

val b: Byte = 1

val x: Int = 1

val l: Long = 1

val s: Short = 1

val d: Double = 2.0

val f: Float = 3.0

In the first four examples, if you don’t explicitly specify a type, the number 1will default
to an Int, so if you want one of the other data types — Byte, Long, or Short — you
need to explicitly declare those types, as shown. Numbers with a decimal (like 2.0) will
default to a Double, so if you want a Float you need to declare a Float, as shown in
the last example.

Because Int and Double are the default numeric types, you typically create them with-
out explicitly declaring the data type:

val i = 123 // defaults to Int

val x = 1.0 // defaults to Double

The REPL confirms this:

scala> val i = 123

i: Int = 123

scala> val x = 1.0

x: Double = 1.0

35

36 CHAPTER 9. A FEW BUILT-IN TYPES

All of those data types have the same data ranges1 as their Java equivalents.

9.1 BigInt and BigDecimal

For large numbers Scala also includes the types BigInt and BigDecimal:

var b = BigInt(1234567890)

var b = BigDecimal(123456.789)

Here’s a link for more information about BigInt and BigDecimal2.

9.2 String and Char

Scala also has String and Char data types, which I always declare with the implicit
form:

val name = "Bill"

val c = 'a'

1http://kbhr.co/hs-data-ranges
2http://kbhr.co/hs-bigint

http://kbhr.co/hs-data-ranges
http://kbhr.co/hs-bigint
http://kbhr.co/hs-data-ranges
http://kbhr.co/hs-bigint

10
Two Notes About Strings

Scala strings have a lot of nice features, but I want to take a moment to highlight two
features that I’ll use in the rest of this book. The first feature is that Scala has a nice,
Ruby-like way to merge multiple strings. Given these three variables:

val firstName = "John"

val mi = 'C'

val lastName = "Doe"

you can append them together like this, if you want to:

val name = firstName + " " + mi + " " + lastName

However, Scala provides this more convenient form:

val name = s"$firstName $mi $lastName"

This creates a very readable way to print multiple strings:

val name = println(s"Name: $firstName $mi $lastName")

As shown, all you have to do to use this approach is to precede the string with the letter
s, and then put a $ symbol before your variable names inside the string. This feature is
known as string interpolation.

You can also precede strings with the letter f, which lets you use printf
style formatting inside strings. See my Scala string interpolation tutorial1
for more information.

1http://kbhr.co/hs-string-interp

37

http://kbhr.co/hs-string-interp
http://kbhr.co/hs-string-interp

38 CHAPTER 10. TWO NOTES ABOUT STRINGS

10.1 Multiline strings

A second great feature of Scala strings is that you can create multiline strings by includ-
ing the string inside three parentheses:

val speech = """Four score and

seven years ago

our fathers ..."""

That’s very helpful for when you need to work with multiline strings. One drawback
of this basic approach is that lines after the first line are indented, as you can see in the
REPL:

scala> val speech = """Four score and

| seven years ago

| our fathers ..."""

speech: String =

Four score and

seven years ago

our fathers ...

A simple way to fix this problem is to put a | symbol in front of all lines after the first
line, and call the stripMargin method after the string:

val speech = """Four score and

|seven years ago

|our fathers ...""".stripMargin

The REPL shows that when you do this, all of the lines are left-justified:

scala> val speech = """Four score and

| |seven years ago

| |our fathers ...""".stripMargin

speech: String =

Four score and

seven years ago

our fathers ...

Because this is generally what you want, this is a common way to create multiline
strings.

10.1. MULTILINE STRINGS 39

There are many more cool things you can do with strings. See my collection of over
100 Scala string examples2 for more details and examples.

2http://kbhr.co/hs-strings

http://kbhr.co/hs-strings
http://kbhr.co/hs-strings
http://kbhr.co/hs-strings

40 CHAPTER 10. TWO NOTES ABOUT STRINGS

11
Command-Line I/O

To get ready to show for loops, if expressions, and other Scala constructs, let’s take a
look at how to handle command-line input and output with Scala.

11.1 Writing output

As I’ve already shown, you write output to standard out (STDOUT) using println:

println("Hello, world")

That function adds a newline character after your string, so if you don’t want that, just
use print instead:

print("Hello without newline")

When needed, you can also write output to standard error (STDERR) like this:

System.err.println("yikes, an error happened")

Because println is so commonly used, there’s no need to import it. The
same is true of other commonly-used types like String, Int, Float, etc.

11.2 Reading input

There are several ways to read command-line input, but the easiest way is to use the
readLine method in the scala.io.StdIn package.

To demonstrate how readLine works, let’s create a little example. Put this source code
in a file named HelloInteractive.scala:

41

42 CHAPTER 11. COMMAND-LINE I/O

import scala.io.StdIn.readLine

object HelloInteractive extends App {

print("Enter your first name: ")

val firstName = readLine()

print("Enter your last name: ")

val lastName = readLine()

println(s"Your name is $firstName $lastName")

}

Then compile it with scalac:

$ scalac HelloInteractive.scala

Then run it with scala:

$ scala HelloInteractive

When you run the program and enter your first and last names at the prompts, the
interaction looks like this:

$ scala HelloInteractive

Enter your first name: Alvin

Enter your last name: Alexander

Your name is Alvin Alexander

11.2.1 A note about imports

As you saw in this application, you bring classes and methods into scope in Scala just
like you do with Java and other languages, with import statements:

import scala.io.StdIn.readLine

That import statement brings the readLine method into the current scope so you can
use it in the application.

12
Control Structures

Scala has the basic control structures you’d expect to find in a programming language,
including:

• if/then/else

• for loops
• try/catch/finally

It also has a few advanced constructs, including:

• match expressions
• for expressions

I’ll demonstrate all of those in the following lessons.

43

44 CHAPTER 12. CONTROL STRUCTURES

13
The if/then/else Construct

A basic Scala if statement looks like this:

if (a == b) doSomething()

You can also write that statement like this:

if (a == b) {

doSomething()

}

The if/else construct looks like this:

if (a == b) {

doSomething()

} else {

doSomethingElse()

}

The complete Scala if/else-if/else expression looks like this:

if (test1) {

doX()

} else if (test2) {

doY()

} else {

doZ()

}

13.1 if expressions always return a result

A great thing about the Scala if construct is that it always returns a result. You can
ignore the result as I did in the previous examples, but a more common approach —

45

46 CHAPTER 13. THE IF/THEN/ELSE CONSTRUCT

especially in functional programming — is to assign the result to a variable:

val minValue = if (a < b) a else b

This is cool because it means that Scala doesn’t require a special “ternary” operator.

13.2 Aside: Expression-oriented programming

As a brief note about programming in general, when every expression youwrite returns
a value, that style is referred to as expression-oriented programming, or EOP. This is an
example of an expression:

val minValue = if (a < b) a else b

Conversely, lines of code that don’t return values are called statements, and statements
are used for their side-effects. For example, these lines of code don’t return values, so
they’re used for their side effects:

if (a == b) doSomething()

println("Hello")

The first example runs the doSomething method as a side effect when a is equal to
b. The second example is used for the side effect of writing a string to STDOUT. As
you learn more about Scala you’ll find yourself writing more expressions and fewer
statements.

14
for and while Loops

In its most simple use, a Scala for-loop can be used to iterate over the elements in a
collection. For example, given a sequence of integers in a Vector:

val nums = Vector(1,2,3)

you can loop over them and print out their values like this:

for (n <- nums) println(n)

This is what that code looks like in the REPL:

scala> val nums = Vector(1,2,3)

nums: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

scala> for (n <- nums) println(n)

1

2

3

That example stores a sequence of integers in a Vector, resulting in the data
type Vector[Int]. Similarly, here’s a List of strings, which has the data type
List[String]:

val people = List(

"Bill",

"Candy",

"Karen",

"Leo",

"Regina"

)

47

48 CHAPTER 14. FOR AND WHILE LOOPS

You print its values using a for loop just like the previous example:

for (p <- people) println(p)

Vector and List are two types of sequential collections classes. In Scala
these classes are generally preferred over Array. (More on this later.)

14.1 The foreach method

For the purpose of iterating over a collection of elements and printing its contents
you can also use the foreach method that’s available to Scala collections classes. For
example, this is how you use foreach to print the previous list of strings:

people.foreach(println)

These days I generally use for loops, but foreach is also available on data types like
Vector, List, Array, ArrayBuffer, Map, Set, and more.

14.2 Using for and foreach with Maps

You can also use for and foreach when working with a Scala Map (which is similar to
a Java HashMap). For example, given this Map of movie names and ratings:

val ratings = Map(

"Lady in the Water" -> 3.0,

"Snakes on a Plane" -> 4.0,

"You, Me and Dupree" -> 3.5

)

You can print the names and ratings using for like this:

for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")

Here’s what that looks like in the REPL:

scala> for ((name,rating) <- ratings) println(s"Movie: $name, Rating: $rating")

Movie: Lady in the Water, Rating: 3.0

Movie: Snakes on a Plane, Rating: 4.0

14.3. WHILE AND DO/WHILE 49

Movie: You, Me and Dupree, Rating: 3.5

In this example, name corresponds to each key in the map, and rating is the name for
each value in the map.

You can also print the ratings with foreach like this:

ratings.foreach {

case(movie, rating) => println(s"key: $movie, value: $rating")

}

When I first started working with Scala I used foreach quite a bit, but after learning
about functional programming I rarely use foreach, mainly because it’s only used for
side effects. Therefore, I won’t discuss the case syntax used in this example. However,
I will discuss match expressions and case statements later in this book.

14.3 while and do/while

Scala also has while and do/while loops, which are also used for side effects. Here’s the
while loop:

var i = 0

while (i < 3) {

println(i)

i += 1

}

This is the do/while loop syntax:

var i = 0

do {

println(i)

i += 1

} while (i < 3)

As shown, you use += to increment an Int variable. Similarly, you use -= to decrement
one.

50 CHAPTER 14. FOR AND WHILE LOOPS

15
for Expressions

If you recall what I wrote about Expression-Oriented Programming (EOP) and the
difference between expressions and statements, you’ll notice that in the previous lesson
I used the for keyword and foreach method as tools for side effects: I used them to
print the values in collections to STDOUT using println. Java has similar tools, and
that’s how I used them for many years without ever giving much thought to how they
could be improved.

After I started working with Scala I learned that in functional programming languages
you can use powerful for-expressions (also known as for-comprehensions) in addition
to for-loops. In Scala, a for-expression is a different use of the for construct. While
a for-loop is used for side effects (such as printing output), a for-expression is used to
create a new collection from an existing collection. (In advanced Scala code it has even
more uses.)

For example, given this list of integers:

val nums = Seq(1,2,3)

You can create a new list of integers where all of the values are doubled, like this:

val doubledNums = for (n <- nums) yield n * 2

That expression can be read as, “For every number n in the list of numbers nums, double
each value, and then assign all of the new values to the variable doubledNums.” This is
what it looks like in the Scala REPL:

scala> val doubledNums = for (n <- nums) yield n * 2

doubledNums: Seq[Int] = List(2, 4, 6)

As the REPL output shows, the new list doubledNums contains these values:

List(2,4,6)

51

52 CHAPTER 15. FOR EXPRESSIONS

The result of the for-expression is that it creates a new variable named doubledNums

whose values were created by doubling each value in the original list, nums.

15.1 Capitalizing a list of strings

You can use the same approach with a list of strings. For example, given this list of
lowercase strings:

val names = List("adam", "david", "frank")

You can create a list of capitalized strings with this for-expression:

val capNames = for (name <- names) yield name.capitalize

The REPL shows how this works:

scala> val capNames = for (name <- names) yield name.capitalize

capNames: List[String] = List(Adam, David, Frank)

Success! Each name in the new variable capNames is capitalized.

15.2 The yield keyword

Notice that both of those for-expressions use the yield keyword:

val doubledNums = for (n <- nums) yield n * 2

val capNames = for (name <- names) yield name.capitalize

Using yield after for is the “secret sauce” that says, “I want to yield a new collection
from the existing collection that I’m iterating over in the for-expression, using the al-
gorithm shown.”

It’s important to note that the original collections nums and names have not been
changed. The for-expressions shown create the new collections doubledNums and
capNames from those original collections without modifying them.

15.3. USING A BLOCK OF CODE AFTER YIELD 53

15.3 Using a block of code after yield

The code after the yield expression can be as long as necessary to solve the current
problem. For example, given a list of strings like this:

val names = List("_adam", "_david", "_frank")

Imagine that youwant to create a new list that has the capitalized names of each person.
To do that, you first need to remove the underscore character at the beginning of each
name, and then capitalize each name. To remove the underscore from each name,
you call the tail method on each String, which returns every character after the first
character. After you do that, you call the capitalize method on each string. Here’s a
for-expression that implements this algorithm:

val capNames = for (name <- names) yield {

val nameWithoutUnderscore = name.tail

val capName = nameWithoutUnderscore.capitalize

capName

}

If you put that code in the REPL, you’ll see this result:

capNames: List[String] = List(Adam, David, Frank)

15.3.1 How tail works

The tail method works on sequential collections, and returns every element in the
collection after the first element (which is known as the head element). Because a
String is a sequence of characters (Seq[Char]), the head and tail methods work on
strings like this:

scala> val result = "fred".head

result: Char = f

scala> val result = "fred".tail

result: String = red

54 CHAPTER 15. FOR EXPRESSIONS

15.3.2 A shorter version of the solution

I show the verbose form of the solution in that example so you can see how to use
multiple lines of code after yield. However, for this particular example you can also
write the code like this, which is more of the Scala style:

val capNames = for (name <- names) yield name.tail.capitalize

You can also put curly braces around the algorithm, if you prefer:

val capNames = for (name <- names) yield { name.tail.capitalize }

Lastly, you can also explicitly show the variable type, if you prefer:

val capNames: List[String] = for (name <- names) yield name.tail.capitalize

15.4 See also

• My Scala for-loop examples and syntax1

• My How to create Scala for-expressions2

• List Comprehensions on Wikipedia3

1http://kbhr.co/hs-for-loop
2http://kbhr.co/hs-for-expr
3https://en.wikipedia.org/wiki/List_comprehension

http://kbhr.co/hs-for-loop
http://kbhr.co/hs-for-expr
https://en.wikipedia.org/wiki/List_comprehension
http://kbhr.co/hs-for-loop
http://kbhr.co/hs-for-expr
https://en.wikipedia.org/wiki/List_comprehension

16
match Expressions

Scala has a concept of a match expression. In the most simple case you can use a match
expression like a Java switch statement:

// i is an integer

i match {

case 1 => println("January")

case 2 => println("February")

case 3 => println("March")

case 4 => println("April")

case 5 => println("May")

case 6 => println("June")

case 7 => println("July")

case 8 => println("August")

case 9 => println("September")

case 10 => println("October")

case 11 => println("November")

case 12 => println("December")

// catch-all case for any other number

case _ => println("Invalid month")

}

As shown, with a match expression you write a number of case statements that you
use to match possible values. In this example I match the integer values 1 through 12.
Any other value falls down to the _ case, which is the catch-all, default case.

match expressions are nice because they also return values, so rather than directly print-
ing a string as in that example, you can assign the string result to a new value:

val monthName = i match {

case 1 => "January"

case 2 => "February"

case 3 => "March"

55

56 CHAPTER 16. MATCH EXPRESSIONS

case 4 => "April"

case 5 => "May"

case 6 => "June"

case 7 => "July"

case 8 => "August"

case 9 => "September"

case 10 => "October"

case 11 => "November"

case 12 => "December"

case _ => "Invalid month"

}

Using a match expression to yield a result like this is a common use.

16.1 Aside: A quick look at Scala methods

Scala also makes it easy to use a match expression as the body of a method. I haven’t
shownhow towrite Scalamethods yet, so as a brief introduction, letme share amethod
named convertBooleanToString that takes a Boolean value named bool and returns
a String:

def convertBooleanToString(bool: Boolean): String = {

if (bool) "true" else "false"

}

Even though I haven’t introduced the method syntax yet, I hope you can see how that
code works. These REPL examples demonstrate it with true and false values:

scala> val answer = convertBooleanToString(true)

answer: String = true

scala> val answer = convertBooleanToString(false)

answer: String = false

16.2 Using a match expression as the body of a method

Now that you’ve seen an example of a Scalamethod, here’s a second example that works
just like the previous one, taking a Boolean value named bool as an input parameter

16.3. HANDLING ALTERNATE CASES 57

and returning a String message. The big difference is that this method uses a match

expression for the body of the method:

def convertBooleanToString(bool: Boolean): String = bool match {

case true => "true"

case false => "false"

}

The body of that method is a match expression with two case statements, one that
matches true and another that matches false. Because those are the only possible
Boolean values, there’s no need for a default case statement.

The REPL shows how you call that method and then print its result:

scala> val result = convertBooleanToString(true)

result: String = true

scala> println(result)

true

Using a match expression as the body of a method is a common technique.

16.3 Handling alternate cases

Scala match expressions are extremely powerful, so I’ll demonstrate a few other things
you can do with them.

match expressions let you handle multiple cases in a single case statement. To demon-
strate this, imagine that you want to evaluate “boolean equality” like the Perl program-
ming language handles it: a 0 or a blank string evaluates to false, and anything else
evaluates to true. This is how you write a method using a match expression that evalu-
ates to true and false in the manner described:

def isTrue(a: Any) = a match {

case 0 | "" => false

case _ => true

}

58 CHAPTER 16. MATCH EXPRESSIONS

Because the input parameter a is defined to be the Any type — which is the root of all
Scala classes, like Object in Java — this method works with any data type that’s passed
in:

scala> isTrue(0)

res0: Boolean = false

scala> isTrue("")

res1: Boolean = false

scala> isTrue(1.1F)

res2: Boolean = true

scala> isTrue(new java.io.File("/etc/passwd"))

res3: Boolean = true

The key part of this solution is that this single case statement lets both 0 and the empty
string evaluate to false:

case 0 | "" => false

Before I move on, here’s another example that shows many matches in each case state-
ment:

val evenOrOdd = i match {

case 1 | 3 | 5 | 7 | 9 => println("odd")

case 2 | 4 | 6 | 8 | 10 => println("even")

case _ => println("some other number")

}

Here’s another example that shows how to handle multiple strings in multiple case

statements:

cmd match {

case "start" | "go" => println("starting")

case "stop" | "quit" | "exit" => println("stopping")

case _ => println("doing nothing")

}

16.4. USING IF EXPRESSIONS IN CASE STATEMENTS 59

16.4 Using if expressions in case statements

Another great thing about match expressions is that you can use if expressions in case

statements for powerful pattern matching. In this example the second and third case

statements both use if expressions to match ranges of numbers:

count match {

case 1 => println("one, a lonely number")

case x if x == 2 || x == 3 => println("two's company, three's a crowd")

case x if x > 3 => println("4+, that's a party")

case _ => println("i'm guessing your number is zero or less")

}

Scala doesn’t require you to use parentheses in the if expressions, but you can use them
if you think that makes them more readable:

count match {

case 1 => println("one, a lonely number")

case x if (x == 2 || x == 3) => println("two's company, three's a crowd")

case x if (x > 3) => println("4+, that's a party")

case _ => println("i'm guessing your number is zero or less")

}

You can also write the code on the right side of the => on multiple lines if you think
that’s easier to read. Here’s one example:

count match {

case 1 =>

println("one, a lonely number")

case x if x == 2 || x == 3 =>

println("two's company, three's a crowd")

case x if x > 3 =>

println("4+, that's a party")

case _ =>

println("i'm guessing your number is zero or less")

}

Here’s a variation of that example that uses parentheses around the body of each case:

60 CHAPTER 16. MATCH EXPRESSIONS

count match {

case 1 => {

println("one, a lonely number")

}

case x if x == 2 || x == 3 => {

println("two's company, three's a crowd")

}

case x if x > 3 => {

println("4+, that's a party")

}

case _ => {

println("i'm guessing your number is zero or less")

}

}

Here are a few other examples of how you can use if expressions in case statements.
First, another example of how to match ranges of numbers:

i match {

case a if 0 to 9 contains a => println("0-9 range: " + a)

case b if 10 to 19 contains b => println("10-19 range: " + a)

case c if 20 to 29 contains c => println("20-29 range: " + a)

case _ => println("Hmmm...")

}

Lastly, this example shows how to reference class fields in if expressions:

stock match {

case x if (x.symbol == "XYZ" && x.price < 20) => buy(x)

case x if (x.symbol == "XYZ" && x.price > 50) => sell(x)

case x => doNothing(x)

}

16.5. EVEN MORE … 61

16.5 Even more …

match expressions are very powerful, and there are even more things you can do with
them. Please see the match expressions on this page1 or the Scala Cookbook2 for more
examples.

1http://kbhr.co/hs-match
2http://kbhr.co/hs-cook

http://kbhr.co/hs-match
http://kbhr.co/hs-cook
http://kbhr.co/hs-match
http://kbhr.co/hs-cook

62 CHAPTER 16. MATCH EXPRESSIONS

17
try/catch/finally Expressions

Like Java, Scala has a try/catch/finally construct to let you catch and manage excep-
tions. Themain difference is that for consistency, Scala uses the same syntax that match
expressions use: case statements to match the different possible exceptions that can
occur.

17.1 A try/catch example

Here’s an example of Scala’s try/catch syntax. In this example, openAndReadAFile is a
method that does what its name implies: it opens a file and reads the text in it, assigning
the result to the variable named text:

var text = ""

try {

text = openAndReadAFile(filename)

} catch {

case e: FileNotFoundException => println("Couldn't find that file.")

case e: IOException => println("D'oh, an IOException!")

}

Scala uses the java.io.* classes to work with files, so attempting to open and read a file
can result in both a FileNotFoundException and an IOException. Those two excep-
tions are caught in the catch block of this example.

17.2 try, catch, and finally

The Scala try/catch syntax also lets you use a finally clause, which is typically used
when you need to close a resource. Here’s an example of what that looks like:

63

64 CHAPTER 17. TRY/CATCH/FINALLY EXPRESSIONS

try {

// your scala code here

}

catch {

case foo: FooException => handleFooException(foo)

case bar: BarException => handleBarException(bar)

case _: Throwable => println("Got some other kind of Throwable")

} finally {

// your scala code here, such as closing a database connection

// or file handle

}

17.3 More later

I’ll cover more details about Scala’s try/catch/finally syntax in later lessons, such as in
the “Error Handling” lessons, but these examples demonstrate the syntax. It’s great
that it’s consistent with the match expression syntax because it’s easier to remember,
and therefore less of a burden on my brain.

18
Classes

In support of object-oriented programming (OOP), Scala provides a class construct.
The syntax is more concise than languages like Java and C#, but it’s also still easy to use
and read.

18.1 Basic class constructor

Here’s a Scala class whose constructor defines two parameters, firstName and
lastName:

class Person(var firstName: String, var lastName: String)

With that definition you can create new Person instances like this:

val p = new Person("Bill", "Panner")

Defining parameters in a class constructor automatically creates fields in the class, and
in this example you can access the firstName and lastName fields like this:

scala> println(p.firstName + " " + p.lastName)

Bill Panner

In this example, because both fields are defined as var fields, they’re also mutable,
meaning they can be changed. This is how you change them:

scala> p.firstName = "Forest"

p.firstName: String = Forest

scala> p.lastName = "Bernheim"

p.lastName: String = Bernheim

65

66 CHAPTER 18. CLASSES

If you’re coming to Scala from Java, this Scala code:

class Person(var firstName: String, var lastName: String)

is pretty much the equivalent of this Java code:

public class Person {

private String firstName;

private String lastName;

public Person(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

public String getFirstName() {

return this.firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return this.lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

}

18.2 val makes fields read-only

In that first example I defined both fields as var fields:

18.3. CLASS CONSTRUCTORS 67

class Person(var firstName: String, var lastName: String)

--- ---

That makes those fields mutable. You can also define them as val fields, which makes
them immutable:

class Person(val firstName: String, val lastName: String)

--- ---

If you now try to change the first or last name of a Person instance, you’ll see an error:

scala> p.firstName = "Fred"

<console>:12: error: reassignment to val

p.firstName = "Fred"

^

scala> p.lastName = "Jones"

<console>:12: error: reassignment to val

p.lastName = "Jones"

^

Pro tip: If you use Scala to write OOP code, create your fields as var fields
so you can easily mutate them. When you write FP code with Scala, you’ll
generally use case classes instead of classes like this. (More on this later.)

18.3 Class constructors

In Scala, the primary constructor of a class is a combination of:

• The constructor parameters
• Methods that are called in the body of the class
• Statements and expressions that are executed in the body of the class

Fields declared in the body of a Scala class are handled in a manner similar to Java;
they’re assigned when the class is first instantiated.

This Person class demonstrates several of the things you can do inside the body of a
class.

68 CHAPTER 18. CLASSES

class Person(var firstName: String, var lastName: String) {

println("the constructor begins")

// fields have 'public' access by default

var age = 0

// a private class field

private val HOME = System.getProperty("user.home")

// some methods

override def toString(): String =

s"$firstName $lastName is $age years old"

def printHome(): Unit = println(s"HOME = $HOME")

def printFullName(): Unit = println(this)

printHome()

printFullName()

println("you've reached the end of the constructor")

}

Putting this code in the REPL demonstrates how it works:

scala> val p = new Person("Kim", "Carnes")

the constructor begins

HOME = /Users/al

Kim Carnes is 0 years old

you've reached the end of the constructor

p: Person = Kim Carnes is 0 years old

// that last line is output by the REPL, not my code

scala> p.age

res0: Int = 0

scala> p.age = 36

p.age: Int = 36

18.4. A NOTE ABOUT THE SPECIAL PROCEDURE SYNTAX 69

scala> p

res1: Person = Kim Carnes is 36 years old

scala> p.printHome

HOME = /Users/al

scala> p.printFullName

Kim Carnes is 36 years old

Speaking from my own experience, this constructor approach felt a little unusual at
first, but once I understood how it works I found it to be logical and convenient.

18.4 A note about the special procedure syntax

In that example I declared these two methods to return the Unit type:

def printHome(): Unit = println(s"HOME = $HOME")

def printFullName(): Unit = println(this)

The Unit return type means that these methods don’t return anything; in this case they
just print some output. Methods that don’t return anything are known as procedures.
Up through at least Scala 2.12 you can also use this special procedure syntax to declare
procedures:

def printHome { println(s"HOME = $HOME") }

def printFullName { println(this) }

Because these methods don’t have any input parameters and also have no return type,
that’s a perfectly legal way to define these methods.

However, be aware that this syntax may go away in future Scala releases.
(There’s a concern that this is a special syntax just to save a few characters
of typing.)

70 CHAPTER 18. CLASSES

18.5 Other Scala class examples

Before we move on, here are a few other examples of Scala classes:

class Pizza (

var crustSize: Int,

var crustType: String,

var toppings: Seq[Topping]

)

// a stock, like AAPL or GOOG

class StockPriceInstance(

var symbol: String,

var price: BigDecimal,

var datetime: Date

)

// a network socket

class Socket(val timeout: Int, val linger: Int) {

override def toString = s"timeout: $timeout, linger: $linger"

}

class Address (

var street1: String,

var street2: String,

var city: String,

var state: String

)

19
Auxiliary Class Constructors

Auxiliary class constructors are defined by creatingmethods in the class that are named
this. There are only a few rules to know:

• Each auxiliary constructor must have a different signature (different parameter
lists)

• Each auxiliary constructor must call one of the previously defined constructors

Here’s an example of a Pizza class that defines multiple constructors:

val DEFAULT_CRUST_SIZE = 12

val DEFAULT_CRUST_TYPE = "THIN"

// the primary constructor

class Pizza (var crustSize: Int, var crustType: String) {

// one-arg auxiliary constructor

def this(crustSize: Int) {

this(crustSize, DEFAULT_CRUST_TYPE)

}

// one-arg auxiliary constructor

def this(crustType: String) {

this(DEFAULT_CRUST_SIZE, crustType)

}

// zero-arg auxiliary constructor

def this() {

this(DEFAULT_CRUST_SIZE, DEFAULT_CRUST_TYPE)

}

71

72 CHAPTER 19. AUXILIARY CLASS CONSTRUCTORS

override def toString = s"A $crustSize inch pizza with a $crustType crust"

}

With all of those constructors defined, you can create pizza instances in several differ-
ent ways:

val p1 = new Pizza(DEFAULT_CRUST_SIZE, DEFAULT_CRUST_TYPE)

val p2 = new Pizza(DEFAULT_CRUST_SIZE)

val p3 = new Pizza(DEFAULT_CRUST_TYPE)

val p4 = new Pizza

I encourage you to paste that class and those examples into the Scala REPL to see how
they work.

Note: The DEFAULT_CRUST_SIZE and DEFAULT_CRUST_TYPE variables
aren’t a great example of how to handle this situation, but because I
haven’t shown how to handle enumerations yet, I use this approach to
keep things simple.

20
Supplying Default Values for
Constructor Parameters

A convenient Scala feature is that you can supply default values for constructor param-
eters. In the previous lessons I showed that you can define a Socket class like this:

class Socket(var timeout: Int, var linger: Int) {

override def toString = s"timeout: $timeout, linger: $linger"

}

That’s nice, but you can make this class even better by supplying default values for the
timeout and linger parameters:

class Socket(var timeout: Int = 2000, var linger: Int = 3000) {

override def toString = s"timeout: $timeout, linger: $linger"

}

By supplying default values for the parameters, you can now create a new Socket in a
variety of different ways:

new Socket

new Socket()

new Socket(1000)

new Socket(4000, 6000)

This is what those examples look like in the REPL:

scala> new Socket

res0: Socket = timeout: 2000, linger: 3000

scala> new Socket()

res1: Socket = timeout: 2000, linger: 3000

73

74
CHAPTER 20. SUPPLYING DEFAULT VALUES FOR CONSTRUCTOR

PARAMETERS

scala> new Socket(1000)

res2: Socket = timeout: 1000, linger: 3000

scala> new Socket(4000, 6000)

res3: Socket = timeout: 4000, linger: 6000

20.1 Bonus: Named parameters

Another nice thing about Scala is that you can use a different feature called named
parameters when creating an instance of a class. For example, given this class:

class Socket(var timeout: Int, var linger: Int) {

override def toString = s"timeout: $timeout, linger: $linger"

}

you can create a new Socket using named parameters like this:

val s = new Socket(timeout=2000, linger=3000)

I personally don’t use this feature very often, but it comes in handy every once in a
while, especially when every class constructor parameters has the same type, such as
Int in this example. For instance, some people find that this code:

val s = new Socket(timeout=2000, linger=3000)

is more readable than this code:

val s = new Socket(2000, 3000)

You can also use named parameters when calling methods.

21
A First Look at Methods

In Scala,methods are defined inside classes (just like Java), but for testing purposes you
can also create them in the REPL. This lesson shows a few examples of methods so you
can see what the syntax looks like.

21.1 Defining a method that takes one input parameter

This is how you define a method named double that takes one integer input parameter
named a and returns the doubled value of that integer:

def double(a: Int) = a * 2

In that example themethod name and signature are shown on the left side of the = sign:

def double(a: Int) = a * 2

def is the keyword you use to define a method, the method name is double, and the
input parameter a has the type Int, which is Scala’s integer data type.

The body of the method is shown on the right side, and in this example it simply dou-
bles the value of the input parameter a:

def double(a: Int) = a * 2

After you paste that method into the REPL, you call it (invoke it) by giving it an Int

value:

scala> double(2)

res0: Int = 4

75

76 CHAPTER 21. A FIRST LOOK AT METHODS

scala> double(10)

res1: Int = 20

21.2 Showing the method’s return type

In the previous example I don’t show the method’s return type, but you can show it,
and indeed, I normally do:

def double(a: Int): Int = a * 2

Writing a method like this explicitly declares the method’s return type. When I first
started working with Scala I tended to leave the return type off of my method declara-
tions, but after a while I found that it was easier to maintain my code when I declared
the return type. That way I could just scan the function signature to easily see its input
and output types.

That being said, that’s just my personal preference; use whatever you like.

If you paste that method into the REPL, you’ll see that it works just like the previous
method.

21.3 Methods with multiple input parameters

To show something a little more complex, here’s a method that takes two input param-
eters:

def add(a: Int, b: Int) = a + b

Here’s the same method, with the method’s return type explicitly shown:

def add(a: Int, b: Int): Int = a + b

Here’s a method that takes three input parameters:

def add(a: Int, b: Int, c: Int): Int = a + b + c

21.4. MULTILINE METHODS 77

21.4 Multiline methods

When a method is only one line long I use the format I just showed, but when the
method body gets longer, you must put the lines inside curly braces:

def addThenDouble(a: Int, b: Int): Int = {

val sum = a + b

val doubled = sum * 2

doubled

}

If you paste that code into the REPL, you’ll see that it works just like the previous
examples:

scala> addThenDouble(1, 1)

res0: Int = 4

21.5 return is optional

You can use the return keyword to return a value from your method:

def addThenDouble(a: Int, b: Int): Int = {

val sum = a + b

val doubled = sum * 2

return doubled //<-- return this result

}

However, it isn’t required, and in fact, Scala programmers rarely ever use it:

def addThenDouble(a: Int, b: Int): Int = {

val sum = a + b

val doubled = sum * 2

doubled //<-- `return` isn't needed

}

In fact, that method can be reduced to this:

78 CHAPTER 21. A FIRST LOOK AT METHODS

def addThenDouble(a: Int, b: Int): Int = {

val sum = a + b

sum * 2

}

or this:

def addThenDouble(a: Int, b: Int): Int = {

(a + b) * 2

}

or this:

def addThenDouble(a: Int, b: Int): Int = (a + b) * 2

21.5.1 Why we don’t use return

We don’t use return for a couple of reasons. First, any code inside parentheses is really
just a block of code that evaluates to a result. When you think about your code this
way, you’re not really “returning” anything; the block of code just evaluates to a result.
For instance, if you paste this code into the REPL, you’ll begin to see that it doesn’t feel
right to “return” a value from a block of code:

val c = {

val a = 1

val b = 2

a + b

}

The second reason we don’t use return is that when you write pure functions, the gen-
eral feeling is that you’re writing algebraic equations. If you remember your algebra,
you know that you don’t use return with mathematical expressions:

x = a + b

y = x * 2

Similarly, as your code becomes more functional and you write it more like math ex-
pressions, you’ll find that you won’t use return any more.

21.6. SEE ALSO 79

21.6 See also

If you’re interested in pure functions and functional programming, I writemuchmore
about them in my book, Functional Programming, Simplified1.

1http://kbhr.co/hs-fps

http://kbhr.co/hs-fps
http://kbhr.co/hs-fps

80 CHAPTER 21. A FIRST LOOK AT METHODS

22
Enumerations (and a Complete Pizza

Class)

In this lesson I’ll demonstrate how to create enumerations in Scala. By doing this now,
I can show you what an example Pizza class looks like when written in an object-
oriented manner.

Enumerations are a useful tool for creating small groups of constants, things like the
days of the week, months in a year, suits in a deck of cards, etc., situations where you
have a group of related, constant values.

Because I’m jumping ahead a little bit here I’m not going to explain this syntax too
much, but this is how you create an enumeration for the days of a week:

sealed trait DayOfWeek

case object Sunday extends DayOfWeek

case object Monday extends DayOfWeek

case object Tuesday extends DayOfWeek

case object Wednesday extends DayOfWeek

case object Thursday extends DayOfWeek

case object Friday extends DayOfWeek

case object Saturday extends DayOfWeek

Similarly, this is how you create an enumeration for the suits in a deck of cards:

sealed trait Suit

case object Clubs extends Suit

case object Spades extends Suit

case object Diamonds extends Suit

case object Hearts extends Suit

I’ll discuss traits and case objects later in this book, but if you’ll trust me that this is
how you create enumerations, I can now create a little OOP version of a Pizza class.

81

82 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

22.1 Pizza-related enumerations

Given that brief introduction to enumerations, here are some useful pizza-related enu-
merations:

sealed trait Topping

case object Cheese extends Topping

case object Pepperoni extends Topping

case object Sausage extends Topping

case object Mushrooms extends Topping

case object Onions extends Topping

sealed trait CrustSize

case object SmallCrustSize extends CrustSize

case object MediumCrustSize extends CrustSize

case object LargeCrustSize extends CrustSize

sealed trait CrustType

case object RegularCrustType extends CrustType

case object ThinCrustType extends CrustType

case object ThickCrustType extends CrustType

Those enumerations provide a nice way to work with pizza toppings, crust sizes, and
crust types.

22.2 A sample Pizza class

Now that I have those enumerations, I can define a Pizza class like this:

class Pizza (

var crustSize: CrustSize = MediumCrustSize,

var crustType: CrustType = RegularCrustType

) {

// ArrayBuffer is a mutable sequence (list)

val toppings = scala.collection.mutable.ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = { toppings += t }

def removeTopping(t: Topping): Unit = { toppings -= t }

22.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 83

def removeAllToppings(): Unit = { toppings.clear() }

}

If you save all of that code— including the enumerations— in a file named Pizza.scala,
you can compile it with the usual command:

$ scalac Pizza.scala

That code will create a lot of individual files, so I recommend putting it in
a separate directory.

There’s nothing to run yet because this class doesn’t have a main method, but …

22.3 A complete Pizza class with a main method

If you’re ready to have some fun, replace all of the code in Pizza.scalawith the following
code, which includes a new toString method in the Pizza class and a new driver App
named PizzaTest:

import scala.collection.mutable.ArrayBuffer

sealed trait Topping

case object Cheese extends Topping

case object Pepperoni extends Topping

case object Sausage extends Topping

case object Mushrooms extends Topping

case object Onions extends Topping

sealed trait CrustSize

case object SmallCrustSize extends CrustSize

case object MediumCrustSize extends CrustSize

case object LargeCrustSize extends CrustSize

sealed trait CrustType

case object RegularCrustType extends CrustType

case object ThinCrustType extends CrustType

case object ThickCrustType extends CrustType

84 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

class Pizza (

var crustSize: CrustSize = MediumCrustSize,

var crustType: CrustType = RegularCrustType

) {

// ArrayBuffer is a mutable sequence (list)

val toppings = ArrayBuffer[Topping]()

def addTopping(t: Topping): Unit = { toppings += t }

def removeTopping(t: Topping): Unit = { toppings -= t }

def removeAllToppings(): Unit = { toppings.clear() }

override def toString(): String = {

s"""

|Crust Size: $crustSize

|Crust Type: $crustType

|Toppings: $toppings

""".stripMargin

}

}

// a little "driver" app

object PizzaTest extends App {

val p = new Pizza

p.addTopping(Cheese)

p.addTopping(Pepperoni)

println(p)

}

Notice how you can put all of the enumerations, a Pizza class, and a PizzaTest object
in the same file. That’s a very convenient Scala feature.

Next, compile that code with the usual command:

$ scalac Pizza.scala

22.3. A COMPLETE PIZZA CLASS WITH AMAIN METHOD 85

Then run the PizzaTest object with this command:

$ scala PizzaTest

The output should look like this:

$ scala PizzaTest

Crust Size: MediumCrustSize

Crust Type: RegularCrustType

Toppings: ArrayBuffer(Cheese, Pepperoni)

I put several different concepts together to create that code — including two things I
haven’t discussed yet in the import statement and the ArrayBuffer — but if you have
experience with Java and other languages, I hope it’s not too much to throw at you at
one time.

At this point I encourage you to work with that code as desired. Make changes to
the code, and try using the removeTopping and removeAllToppingsmethods to make
sure they work the way you expect them to work.

86 CHAPTER 22. ENUMERATIONS (AND A COMPLETE PIZZA CLASS)

23
Traits and Abstract Classes

Scala traits are a great feature of the language. As I’ll show in the following lessons,
you can use them just like a Java interface, and you can also use them to “mix in” new
behaviors. Scala classes can also extend multiple traits.

Scala also has the concept of an abstract class, and I’ll show when you should use an
abstract class instead of a trait.

87

88 CHAPTER 23. TRAITS AND ABSTRACT CLASSES

24
Using Traits as Interfaces

One way to use a Scala trait is like a Java interface, where you define the desired
interface for some piece of functionality, but you don’t implement any behavior.

24.1 A simple example

As an example to get us started, imagine that you want to write some code to model
animals like dogs, cats, or any animal that has a tail. In Scala you write a trait to start
that modeling process like this:

trait TailWagger {

def startTail(): Unit

def stopTail(): Unit

}

That code declares a trait named TailWagger that states that any class that extends
TailWagger should implement startTail and stopTail methods. Both of those
methods take no input parameters and have no return value. This code is equivalent
to this Java interface:

public interface TailWagger {

public void startTail();

public void stopTail();

}

24.2 Extending a trait

Given this trait:

89

90 CHAPTER 24. USING TRAITS AS INTERFACES

trait TailWagger {

def startTail(): Unit

def stopTail(): Unit

}

you can write a class that extends the trait and implements those methods like this:

class Dog extends TailWagger {

// the implemented methods

def startTail(): Unit = { println("tail is wagging") }

def stopTail(): Unit = { println("tail is stopped") }

}

Notice that you use the extends keyword to create a class that extends a single trait.

If you paste the TailWagger trait and Dog class into the Scala REPL, you can test the
code like this:

scala> val d = new Dog

d: Dog = Dog@234e9716

scala> d.startTail

tail is wagging

scala> d.stopTail

tail is stopped

That demonstrates how to implement a single Scala trait with a class that extends the
trait.

24.3 Extending multiple traits

Scala lets you create very modular code with traits. For example, you can break down
the attributes of animals into small, logical, modular units:

trait Speaker {

def speak(): String

}

24.3. EXTENDING MULTIPLE TRAITS 91

trait TailWagger {

def startTail(): Unit

def stopTail(): Unit

}

trait Runner {

def startRunning(): Unit

def stopRunning(): Unit

}

Once you have those small pieces, you can create a Dog class by extending all of them,
and implementing the necessary methods:

class Dog extends Speaker with TailWagger with Runner {

// Speaker

def speak(): String = "Woof!"

// TailWagger

def startTail(): Unit = { println("tail is wagging") }

def stopTail(): Unit = { println("tail is stopped") }

// Runner

def startRunning(): Unit = { println("I'm running") }

def stopRunning(): Unit = { println("Stopped running") }

}

Key points of this code:

• Use extends to extend the first trait
• Use with to extend subsequent traits

So far you’ve seen that Scala traits work just like Java interfaces. But there’s more …

92 CHAPTER 24. USING TRAITS AS INTERFACES

25
Using Traits Like Abstract Classes

Traits have much more functionality than what I just showed. You can also add real,
working methods to them and use them like abstract classes, or more accurately, as
mixins.

25.1 A first example

To demonstrate this, here’s a Scala trait that has a concrete method named speak, and
an abstract method named comeToMaster:

trait Pet {

def speak { println("Yo") } // concrete implementation

def comeToMaster(): Unit // abstract

}

When a class extends a trait each definedmethodmust be implemented, so here’s a Dog
class that extends Pet and defines comeToMaster:

class Dog(name: String) extends Pet {

def comeToMaster(): Unit = println("Woo-hoo, I'm coming!")

}

Unless you want to override speak, there’s no need to redefine it, so this is a perfectly
complete Scala class. Now you can create a new Dog like this:

val d = new Dog("Zeus")

Then you can call speak and comeToMaster. This is what it looks like in the REPL:

scala> val d = new Dog("Zeus")

d: Dog = Dog@4136cb25

93

94 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

scala> d.speak

Yo

scala> d.comeToMaster

Woo-hoo, I'm coming!

25.2 Overriding an implemented method

A class can also override a method that’s defined in a trait. Here’s an example:

class Cat extends Pet {

// override 'speak'

override def speak(): Unit = println("meow")

def comeToMaster(): Unit = println("That's not gonna happen.")

}

The REPL shows how this works:

scala> val c = new Cat

c: Cat = Cat@1953f27f

scala> c.speak

meow

scala> c.comeToMaster

That's not gonna happen.

25.3 Mixing in multiple traits that have behaviors

A great thing about Scala traits is that you can mix multiple traits that have behaviors
into classes. For example, here’s a combination of traits, one of which defines an ab-
stract method, and the others that define concrete method implementations:

trait Speaker {

def speak(): String //abstract

}

25.3. MIXING IN MULTIPLE TRAITS THAT HAVE BEHAVIORS 95

trait TailWagger {

def startTail(): Unit = println("tail is wagging")

def stopTail(): Unit = println("tail is stopped")

}

trait Runner {

def startRunning(): Unit = println("I'm running")

def stopRunning(): Unit = println("Stopped running")

}

Now you can create a Dog class that extends all of those traits while providing behavior
for the speak method:

class Dog(name: String) extends Speaker with TailWagger with Runner {

def speak(): String = "Woof!"

}

And here’s a Cat class:

class Cat extends Speaker with TailWagger with Runner {

def speak(): String = "Meow"

override def startRunning(): Unit = println("Yeah ... I don't run")

override def stopRunning(): Unit = println("No need to stop")

}

The REPL shows that this all works like you’d expect it to work. First, a Dog:

scala> d.speak

res0: String = Woof!

scala> d.startRunning

I'm running

scala> d.startTail

tail is wagging

Then a Cat:

scala> val c = new Cat

c: Cat = Cat@1b252afa

96 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

scala> c.speak

res1: String = Meow

scala> c.startRunning

Yeah ... I don't run

scala> c.startTail

tail is wagging

25.4 Mixing traits in on the fly

As a last note, another interesting thing you can do with traits that have concrete meth-
ods is that you can mix them in on the fly. For example, given these traits:

trait TailWagger {

def startTail(): Unit = println("tail is wagging")

def stopTail(): Unit = println("tail is stopped")

}

trait Runner {

def startRunning(): Unit = println("I'm running")

def stopRunning(): Unit = println("Stopped running")

}

and this Dog class:

class Dog(name: String)

you can create a Dog instance that mixes in those traits when you create a Dog instance:

val d = new Dog("Fido") with TailWagger with Runner

Once again the REPL shows that this works:

scala> val d = new Dog("Fido") with TailWagger with Runner

d: Dog with TailWagger with Runner = $anon$1@50c8d274

25.5. SEE ALSO 97

scala> d.startTail

tail is wagging

scala> d.startRunning

I'm running

This example works because all of the methods in the TailWagger and Runner traits
are defined (they’re not abstract).

25.5 See also

There are many more things you can do with Scala traits. For more details and exam-
ples, please see the Scala Cookbook1.

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

98 CHAPTER 25. USING TRAITS LIKE ABSTRACT CLASSES

26
Abstract Classes

Scala also has a concept of an abstract class that’s similar to Java’s abstract class. But
because traits are so powerful, you rarely need to use an abstract class. In fact, you only
need to use an abstract class when:

• You want to create a base class that requires constructor arguments
• Your Scala code will be called from Java code

26.1 Scala traits don’t allow constructor parameters

Regarding the first reason, Scala traits don’t allow constructor parameters:

// this won't compile

trait Animal(name: String)

Therefore, you need to use an abstract class whenever a base behavior must have con-
structor parameters:

abstract class Animal(name: String)

However, be aware that a class can only extend one abstract class.

26.2 When Scala code will be called from Java code

Regarding the second point, because Java doesn’t know anything about Scala traits, if
you want to call your Scala code from Java code you’ll need to use an abstract class
rather than a trait.

99

100 CHAPTER 26. ABSTRACT CLASSES

I won’t show how to do this in this book, but if you’re interested in an example, please
see the Scala Cookbook1.

26.3 Abstract class syntax

The abstract class syntax is similar to the trait syntax. For example, here’s an abstract
class named Pet that’s similar to the Pet trait I defined in the previous lesson:

abstract class Pet (name: String) {

def speak(): Unit = println("Yo") // concrete implementation

def comeToMaster(): Unit // abstract method

}

Given that abstract Pet class, you can define a Dog class like this:

class Dog(name: String) extends Pet(name) {

override def speak() = println("Woof")

def comeToMaster() = println("Here I come!")

}

The REPL shows that this all works as advertised:

scala> val d = new Dog("Rover")

d: Dog = Dog@51f1fe1c

scala> d.speak

Woof

scala> d.comeToMaster

Here I come!

26.3.1 Notice how name was passed along

All of that code is similar to Java, so I won’t explain it in detail. One thing to notice
is how the name constructor parameter is passed from the Dog class constructor to the

1http://kbhr.co/hs-cook

http://kbhr.co/hs-cook
http://kbhr.co/hs-cook

26.3. ABSTRACT CLASS SYNTAX 101

Pet constructor:

class Dog(name: String) extends Pet(name) {

---- ----

Remember that Pet is declared to take name as a constructor parameter:

abstract class Pet (name: String) { ...

Therefore, this example shows how to pass the constructor parameter from the Dog

class to the abstract Pet class. You can verify that this works with this code:

abstract class Pet (name: String) {

def speak(): Unit = println(s"My name is $name")

}

class Dog(name: String) extends Pet(name)

val d = new Dog("Fido")

d.speak

I encourage you to copy and paste that code into the REPL to be sure it works as you
expect.

102 CHAPTER 26. ABSTRACT CLASSES

27
Collections Classes

If you’re coming to Scala from Java, the best thing you can do is forget about the Java
collections classes and use the Scala collections classes. Speaking from my own expe-
rience, when I first started working with Scala I tried to use Java collections classes
in my Scala code, and in retrospect, that really slowed down my learning process. I
would have been much better off using the Scala collections classes and their methods
because they would have taught me the “Scala way” much more quickly.

27.1 The main Scala collections classes

The main Scala collections classes you’ll use on a regular basis are:

Class Description

ArrayBuffer an indexed, mutable sequence
List a linear (linked list), immutable sequence
Vector an indexed, immutable sequence
Map the base Map (key/value pairs) class
Set the base Set class

Map and Set come in both mutable and immutable versions.

I’ll demonstrate the basics of these classes in the following lessons.

In the following lessons on the collections classes, whenever I use theword
immutable it’s safe to assume that the class is intended for use in a func-
tional programming (FP) style.

103

104 CHAPTER 27. COLLECTIONS CLASSES

28
ArrayBuffer Class

If you’re an OOP developer coming to Scala from Java, the ArrayBuffer class will
probably bemost comfortable for you, so I’ll demonstrate it first. Like Java’s ArrayList
it’s a mutable sequence, so you can use its methods to modify its contents.

To use an ArrayBuffer you must first import it:

import scala.collection.mutable.ArrayBuffer

After it’s imported into the local scope, you create an empty ArrayBuffer like this:

val ints = ArrayBuffer[Int]()

val names = ArrayBuffer[String]()

Once you have an ArrayBuffer you add elements to it in a variety of ways. The +=

method is a common approach:

val ints = ArrayBuffer[Int]()

ints += 1

ints += 2

The REPL shows how += works:

scala> ints += 1

res0: ints.type = ArrayBuffer(1)

scala> ints += 2

res1: ints.type = ArrayBuffer(1, 2)

That’s just one way create an ArrayBuffer and add elements to it. You can also create
an ArrayBuffer with initial elements like this:

val nums = ArrayBuffer(1, 2, 3)

105

106 CHAPTER 28. ARRAYBUFFER CLASS

Here are a few ways you can add more elements to this ArrayBuffer:

// add one element

nums += 4

// add two or more elements

nums += (5, 6)

// add elements from another collection

nums ++= List(7, 8)

You remove elements from an ArrayBuffer with the -= and --= methods:

// remove one element

nums -= 9

// remove two or more elements

nums -= (7, 8)

nums --= Array(5, 6)

Here’s what all of those examples look like in the REPL:

scala> nums += 4

res2: nums.type = ArrayBuffer(1, 2, 3, 4)

scala> nums += (5, 6)

res3: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6)

scala> nums ++= List(7, 8)

res4: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

scala> nums -= 9

res5: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

scala> nums -= (7, 8)

res6: nums.type = ArrayBuffer(1, 2, 3, 4, 5, 6)

28.1. MOREWAYS TOWORKWITH ARRAYBUFFER 107

scala> nums --= Array(5, 6)

res7: nums.type = ArrayBuffer(1, 2, 3, 4)

28.1 More ways to work with ArrayBuffer

There are many more ways to work with an ArrayBuffer. Here are some of the most
common methods:

val a = ArrayBuffer(1, 2, 3) // ArrayBuffer(1, 2, 3)

a.append(4) // ArrayBuffer(1, 2, 3, 4)

a.append(5, 6) // ArrayBuffer(1, 2, 3, 4, 5, 6)

a.appendAll(Seq(7,8)) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8)

a.clear // ArrayBuffer()

val a = ArrayBuffer(9, 10) // ArrayBuffer(9, 10)

a.insert(0, 8) // ArrayBuffer(8, 9, 10)

a.insert(0, 6, 7) // ArrayBuffer(6, 7, 8, 9, 10)

a.insertAll(0, Vector(4, 5)) // ArrayBuffer(4, 5, 6, 7, 8, 9, 10)

a.prepend(3) // ArrayBuffer(3, 4, 5, 6, 7, 8, 9, 10)

a.prepend(1, 2) // ArrayBuffer(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

a.prependAll(Array(0)) // ArrayBuffer(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)

a.remove(0) // ArrayBuffer(b, c, d, e, f, g)

a.remove(2, 3) // ArrayBuffer(b, c, g)

val a = ArrayBuffer.range('a', 'h') // ArrayBuffer(a, b, c, d, e, f, g)

a.trimStart(2) // ArrayBuffer(c, d, e, f, g)

a.trimEnd(2) // ArrayBuffer(c, d, e)

Please see the Scala Cookbook1 and my big page of ArrayBuffer examples2 for more
details on the ArrayBuffer class.

1http://kbhr.co/hs-cook
2http://kbhr.co/hs-arraybuffer

http://kbhr.co/hs-cook
http://kbhr.co/hs-arraybuffer
http://kbhr.co/hs-cook
http://kbhr.co/hs-arraybuffer

108 CHAPTER 28. ARRAYBUFFER CLASS

29
Summary

I hope you enjoyed this book as a quick, gentle introduction to the Scala programming
language, and I hope I was able to share some of the beauty of the language.

29.1 Best Scala books

To help you learn more about Scala, here are some of the best resources I know. First,
as a special mention, Programming in Scala1 is written by Martin Odersky (the creator
of Scala), Bill Venners (creator of ScalaTest and more), and Lex Spoon, and I consider
it to be the reference for the Scala language.

In alphabetical order, I’ve read these other books, and I can recommend them:

• Akka Concurrency2

• Once you know about functional programming, Functional and Reactive Do-
main Modeling3 is a good resource

• Functional Programming in Scala4 is a good resource for learning about FP
• Java Concurrency in Practice5

• Learning Concurrent Programming in Scala6

• Once you’ve had an introduction to Scala (such as in this book), Scala for the
Impatient7 is a good quick reference guide

1http://kbhr.co/hs-ps
2http://kbhr.co/hs-akka-con
3http://kbhr.co/hs-frdm
4http://kbhr.co/hs-fpis
5http://kbhr.co/hs-concurrency
6http://kbhr.co/hs-cpis
7http://kbhr.co/hs-simp

109

http://kbhr.co/hs-ps
http://kbhr.co/hs-akka-con
http://kbhr.co/hs-frdm
http://kbhr.co/hs-frdm
http://kbhr.co/hs-fpis
http://kbhr.co/hs-concurrency
http://kbhr.co/hs-cpis
http://kbhr.co/hs-simp
http://kbhr.co/hs-simp
http://kbhr.co/hs-ps
http://kbhr.co/hs-akka-con
http://kbhr.co/hs-frdm
http://kbhr.co/hs-fpis
http://kbhr.co/hs-concurrency
http://kbhr.co/hs-cpis
http://kbhr.co/hs-simp

110 CHAPTER 29. SUMMARY

29.2 My other books

My other books on Scala are:

• Scala Cookbook8

• Functional Programming, Simplified9

TheCookbook shares themost common recipes forworkingwith Scala, and the second
book attempts to make learning functional programming as simple as possible.

Other books I’ve written include:

• How I Sold My Business: A Personal Diary10

• A Survival Guide for New Consultants11

29.3 Thank you!

Thank you again for reading this book.

All the best,
Al

8http://kbhr.co/hs-cook
9http://kbhr.co/hs-fps
10http://kbhr.co/hs-hismb
11http://kbhr.co/hs-consult

http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-hismb
http://kbhr.co/hs-consult
http://kbhr.co/hs-cook
http://kbhr.co/hs-fps
http://kbhr.co/hs-hismb
http://kbhr.co/hs-consult

Index

+=, 49
-=, 49

abstract class, 99
syntax, 100

App trait, 23
ArrayBuffer, 105

examples, 107

BigDecimal, 36
BigInt, 36

class
abstract, 99
Pizza class, 83
primary constructor, 67

class constructor, 65
class constructors

auxiliary, 71
class files, 20
classes, 9, 65
constructor parameters

default values, 73
named parameters, 74

control structures, 6

data types
numeric, 35

decrement method, 49
do/while loop, 49

enumeration, 81
EOP, 46
equality, 6
explicit variables, 5
expression-oriented programming, 46

expressions, 46

for expression, 51
explained, 51
yield keyword, 52

for expressions, 8
for loop, 47
for loops, 8
foreach, 48

Hello, world, 4, 19

if/else, 6
implicit variables, 5
import, 42
increment method, 49

javap, 20

Map
for loop, 48
foreach, 49

map method, 13
Martin Odersky, 15
match

as method body, 7
match expression, 55

alternate cases, 57
as method body, 56
case statements using if, 58

match expressions, 7
method

multiline, 77
return type, 76
syntax, 75

methods, 10

111

112 INDEX

OOP, 65

println, 41
procedure syntax, 69

readLine, 41
REPL, 4, 25

ScalaFiddle, 26
val fields, 31

return
why it’s not used, 78

scala
properties, 3
two types of variables, 5

scalac, 4
side effects, 46
statements, 46
String

interpolation, 37
multiline, 38

tail, 53
trait

doesn’t allow constructor parameters,
99

example, 89
extending a trait, 89
extending multiple traits, 90

traits
introduction, 10

try/catch, 8, 63
try/catch/finally, 63
tuples, 14

val, 29
in the REPL, 31
makes class fields read-only, 66

var, 29

while loop, 49

	Preface
	Prelude: A Taste of Scala
	The Scala Programming Language
	Hello, World
	Hello, World (Version 2)
	The Scala REPL
	Two Types of Variables
	The Type is Optional
	A Few Built-In Types
	Two Notes About Strings
	Command-Line I/O
	Control Structures
	The if/then/else Construct
	for Loops
	for Expressions
	match Expressions
	try/catch/finally Expressions
	Classes
	Auxiliary Class Constructors
	Supplying Default Values for Constructor Parameters
	A First Look at Methods
	Enumerations (and a Complete Pizza Class)
	Traits and Abstract Classes
	Using Traits as Interfaces
	Using Traits Like Abstract Classes
	Abstract Classes
	Collections Classes
	ArrayBuffer Class
	Summary

